K to 12 Basic Education Curriculum
Technology and Livelihood Education
Learning Module

PLUMBING

EXPLORATORY COURSE
Grade 7 and Grade 8
TABLE OF CONTENTS

What Is This Module About ?...2

How Do You Use This Module ...3

LESSON 1 – **Prepare Plumbing Materials and Tools**..........................4 -37

LESSON 2 – **Perform Mensurations and Calculations**......................38-57

LESSON 3 – **Interpret Technical Drawings and Plans**......................58-72

LESSON 4 – **Maintain Tools and Equipment**......................................73-108

LESSON 5 – **Practice Occupational Health and Safety Procedures**109-121

ANSWER KEYS...122 -128

Acknowledgment...129
Welcome to the world of Plumbing!

This Module is an exploratory and introductory course on Plumbing which leads you to Plumbing National Certificate Level I (NC I). It covers 5 basic competencies in Plumbing that a Grade 7/Grade 8 Technology and Livelihood Education (TLE) student like you ought to possess, namely:

1) Prepare plumbing materials and tools;
2) Perform mensuration and calculation;
3) Interpret Technical Drawings and Plans;
4) Maintain tools and equipment; and
5) Practice occupational health and safety procedures

These 5 common competencies are covered separately in 5 Lessons. As shown below, each lesson is directed to the attainment of one or more learning outcomes:

Lesson 1: Prepare Plumbing Materials and Tools
 LO 1. Identify and select materials and tools.
 LO 2. Request appropriate materials and tools.
 LO 3. Receive and inspect materials and tools.

Lesson 2: Perform Mensuration and Calculation
 LO 1. Select measuring instrument.
 LO 2. Carry out mensuration and calculation.

Lesson 3: Interpret Technical Drawings and Plans
 LO1 Analyze signs, symbols and data.
 LO 2. Interpret technical drawing.
 LO 3. Apply free hand drawing.

Lesson 4: Maintain Tools and Equipment
 LO 1. Check condition of tools and equipment.
 LO 2. Perform basic preventive maintenance.
 LO 3. Store tools and equipment.

Lesson 5: Practice Occupational Health and Safety Procedures
 LO 1. Identify hazards and risks.
 LO 2. Evaluate hazards and risks.
 LO 3. Control hazards and risks.

NATIONAL CERTIFICATE (NC) is a certification issued to individuals who achieved all the required units of competency for a national qualification as defined under the Training Regulations. NCs are aligned to specific levels within the PTQF. (TESDA Board Resolution No. 2004-13, Training Regulations Framework)

NATIONAL CERTIFICATE LEVEL refers to the four (4) qualification levels defined in the Philippine TVET Qualifications Framework (PTQF). Where the worker in:
 a. NC I performs a routine and predictable task; has little judgment; and, works under supervision;
 b. NC II performs prescribed range of functions involving known routines and procedures; has limited choice and complexity of functions; and has little accountability;
How Do You Use This Module?

This Module has 5 Lessons. Each Lesson has the following parts.

- Learning Outcomes
- Performance Standards
- Materials
- References
- Definition of Terms
- What Do You Already Know?
- What Do You Need to Know?
- How Much Have You Learned?
- How Do You Apply What You Learned?
- How Well Did You Perform?
- How Do You Extend Your Learning?

To get the most from this Module, you need to do the following:

1. Begin by reading and understanding the Learning Outcome/s and Performance Standards. These tell you what you should know and be able to do at the end of this Module.
2. Find out what you already know by taking the Pretest then check your answer against the Answer Key. If you get 99 to 100% of the items correctly, you may proceed to the next Lesson. This means that you need not go through the Lesson because you already know what it is about. If you failed to get 99 to 100% correctly, go through the Lesson again and review especially those items which you failed to get.
3. Do the required Learning Activities. They begin with one or more Information Sheets. An Information Sheet contains important notes or basic information that you need to know. After reading the Information Sheet, test yourself on how much you learned by means of the Self-check. Refer to the Answer Key for correction. Do not hesitate to go back to the Information Sheet when you do not get all test items correctly. This will ensure your mastery of basic information.
4. Demonstrate what you learned by doing what the Activity / Operation /Job Sheet directs you to do.
5. You must be able to apply what you have learned in another activity or in real life situation.
6. Accomplish the Scoring Rubrics for you to know how well you performed.

Each Lesson also provides you with references and definition of key terms for your guide. They can be of great help. Use them fully.

If you have questions, ask your teacher for assistance.
LEARNING OUTCOMES:
At the end of this Lesson you are expected to do the following:

LO 1. identify and select materials and tools;
LO 2. request appropriate materials and tools;
LO 3. receive and inspect materials and tools.
Definition of Terms

Pipe
is a long hollow cylinder used chiefly to convey fluid.

Material
is the stuff from which a thing is made of or consisting of matter.

Requisition form
is a form requesting materials and supplies needed for making a project.

Specification
is the description involving measurements like volume, board feet, quality, trademark manufacturer etc.

Tools
is anything which is held by hands and assists a person to do manual work.
LEARNING OUTCOME 1

Identify and select materials and tools

PERFORMANCE STANDARDS

1. Tools and materials are identified per job requirements
2. Tools are classified according to their functions per job requirements.
3. Materials are classified according to their uses for specific construction project.
4. Tools and materials are selected per job requirement.

What Do You Already Know?

Let us determine how much you already know about the use of plumbing tools. Take this test.

Direction: Identify the following materials and tools used in plumbing. Choose your answer from the given in the box.

<table>
<thead>
<tr>
<th>Steel Square</th>
<th>Hack Saw</th>
<th>Cross-Cut Saw</th>
<th>Pipe Cutter</th>
<th>Pipe Threader</th>
<th>Pipe Reamer</th>
<th>Pipe Vise</th>
<th>Plumb Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.

2.

PLUMBING
K to 12 –Technology and Livelihood Education

6
1. Plumbing Materials

- **Steel Pipe Characteristics**

 Steel piping is designed for a long list of applications. Steel piping has gained popularity in the petroleum, oil, automobile, shipping and food industries because of its durability and versatility. Schools, hospitals and refineries also widely employ steel piping.

 1. **Facts**

 - Steel piping can be engineered to any height and strength and is easily modified on-site. There remains a variety of types of steel piping on the market. Common types of steel pipe include standard steel pipe, line steel pipe, structural steel pipe and plumbing tubes. Steel is ductile, bending rather than breaking in the presence of excessive stress. Steel will not morph or lose its strength as time passes. Also, steel is naturally resistant to rot.

 2. **Applications**

 - Line steel pipes are used to transport liquids and gases that are combustible. Standard steel pipes are used for transporting water, natural gas or steam. Structural steel pipes are often used for drainage piping. Plumbing tubes made of steel are used to move potable water or waterborne waste removal.

 3. **Properties**

 - Line steel pipes are galvanized, giving the piping corrosion-resistant properties. Standard steel pipes are fabricated to a diameter no greater than 16 inches, according to Steel Pipes & Tubing. Structural steel tubes are constructed into either square or circular shapes. Plumbing tubes are often fabricated thinner than other
types of steel pipes to allow for easier soldering.

Different Types of Pipes

PVC PIPE - refers to Poly Vinyl Chloride Plastic material. This is the most common pipe for plumbing system.

PE PIPE - refers to Polyethylene Plastic material intended for long span water system installation.

CI PIPE - is a heavy metal made of casting on molds to make fixtures. such as sink, tubs and lavatories, covered with a porcelain enamel coating.

GI PIPE - is a galvanized iron pipe which is better fitted for plumbing installation than steel pipe. It is constructed of rough iron, dipped in molten zinc and maybe identified by its dull grayish color.

SOLVENT - is an adhesive material usually used externally.

TEFLON TAPE - is specifically used for attachment threaded pipe on fittings.

ABS CLEANER AND CEMENT - is an adhesive material used by a plumber when working with ABS pipes.

FITTINGS - are made in different forms that are intended for plumbing joints and connections.

FAUCET - is a point of installation system where flow of water or gas could be manipulated.

MSS - refers to Manufacturer’s Standardization Society.

NIPPLE - is a short length of pipe installed between couplings or other fittings.

ADAPTOR/ADAPTER - is fittings that joints two different types of pipes together, such as ABS to cast iron or threaded to non-threaded.
2. Fittings – are any pipe part used to join two sections of pipes.

Characteristics of Stainless Steel Pipe Fittings

Stainless steel pipe fittings is an alloy based on iron, which combines together the mechanical properties of steels and some specific features of corrosion resistance. These alloys are also liable to tarnish.

This means that they have the possibility to passivate, that means to get covered with an invisible layer of oxides that protects the underlying metal from corrosive attacks. Stainless steel pipe fittings is the name given to a type of steel with high chromium contents that thanks to this feature does not rust when exposed to water and air. They are a very important class of steels, used in countless applications. In fact, nowadays both stainless steel pipe fittings furniture and construction machinery are very popular.

The discovery of this type of steel is due to Harry Brearly, who while was experimenting with various types of alloys for the reeds of guns, noticed that a type of steel with a certain percentage of chromium did not get rusted when exposed to the atmosphere. Later this property was explained by the passivation of chromium, which forms a very thin oxide film on the surface, continuous and stable. The following progresses in metallurgy between the forty and the sixty have extended their development and their applications. They are still refined and adapted to the demands of various industries such as oil/petrochemical, mining, energy, nuclear and food industries. Stainless steel pipe fittings is still refined and adapted to the demands of various industries like petroleum, petrochemical, mining, energy, nuclear, food and obviously building. A lot of machines are built with parts made of steel, from pipes to sheet to steel trolleys.
TYPES of FITTINGS

COPPER SUPPLY

GALVANIZED SUPPLY

PLASTIC SUPPLY
POLYETHYLENE (PE) AND SPIGOT FITTING

PE and PVC FITTINGS
High Quality Pipe Fittings

Tough and durable fittings for PE and PVC pipes. Fast and easy to install.

PE Fittings
- Straight Coupler
- Equal Tee
- Male Tee
- Female Tee
- Male Adaptor
- Female Adaptor
- Male Adapter
- Female Adapter
- Tee Reducer
- End Cap
- Equal Bend
- Male Bend
- Female Bend
- Stub End Long Collar
- Single Outlet Saddle Clamp
- Double Outlet Saddle Clamp
- Reducing Bush
- Hexagon Nipple
- Reducing Nipple

PVC Sanitary Fittings
- Elbow 90 - 1/4 Bend (3X1)
- Elbow 45 - 1/8 Bend (3X1)
- Coupling
- Tee
- P-Trap With Plug
- Wye
- Wye Reducer
- Bushing Reducer
- Clean-Out With Plug

Some items are from third parties.

PLUMBING
K to 12 –Technology and Livelihood Education 12
• FIXTURES

Plumbing Fixture

A plumbing fixture is an exchangeable device which can be connected to an existing plumbing system to deliver and drain away water but which is also configured to enable a particular use.

The most common plumbing fixtures are:

- Bathtubs
- Bidets
- Channel drains (also called trench drains)
- Drinking fountains
- Hose bibbs (connections for water hoses)
- Kitchen sinks
- Lavatories (also called bathroom sinks)
- Showers
- Tapware - an industry term for that sub-category of plumbing fixtures consisting of tap valves, also called water taps or faucets and their accessories, such as water spouts and shower heads.
- Terminal valves for dishwashers, ice makers, humidifiers, etc.
- Urinals
- Utility sinks
- Water closets - (known as toilets in the USA, loos, flush toilets or lavatories in Britain)

Outlets and drains

Each of these plumbing fixtures has one or more water outlets and a drain. In some cases, the drain has a device that can be manipulated to block the drain to fill the basin of the fixture. Each fixture also has a flood rim, or level at which water will begin to overflow. Most fixtures also have an overflow, which is a conduit for water to drain away, when the regular drain is plugged, before the water actually overflows at the flood rim level. However, water closets and showers (that are not in bathtubs) usually lack this feature because their drains normally cannot be stopped.

Each fixture usually has a characteristic means of connection. Normal plumbing practice is to install a valve on each water supply line before the fixture, and this is most commonly termed a stop or "service valve". The water supply to some fixtures is cold water only (such as water closets and urinals). Most fixtures also have a hot water supply. In some occasional cases, a sink may have both a potable (drinkable) and a non-potable water supply.
Traps and vents

This drain cover has a container underneath (which can be taken out for cleaning and revealing another container below) acting as a trap. Water inside the container forms a seal when the cover is in place. Positive air pressure will push the cover up, acting as an early warning device. The underside of the cover (centre image) is kept moist by condensation occurring and insects that go back up the drain pipe get stuck to the walls of the cover.

All plumbing fixtures have traps in their drains; these traps are either internal or external to the fixtures. Traps are pipes which curve down then back up; they ‘trap’ a small amount of water to create a water seal between the ambient air space and the inside of the drain system. This prevents sewer gas from entering buildings. Most water closets, bidets, and many urinals have the trap integral with the fixture itself. The visible water surface in a toilet is the top of the trap’s water seal. Each fixture drain, with exceptions, must be vented so that negative air pressure in the drain cannot siphon the trap dry, to prevent positive air pressure in the sewer from forcing gases past the water seal, and to prevent explosive sewer gas buildup.

Drains The actual initial drain part in a lavatory or sink is termed a strainer. If there is a removable strainer device that fits into the fixed strainer, it is termed a strainer basket. The initial pipe that leads from the strainer to the trap is termed the tailpiece.

Floor-mounted water closets seal to the toilet flange of the drain pipe by means of a wax ring. These are traditionally made out of beeswax. However, their proper sealing depends on proper seating of the water closet, on a firm and secure base (floor), and on proper installation of the closet bolts which secure the closet to the flange, which is in turn supposed to be securely fastened to the floor.
II. PLUMBING TOOLS

MEASURING TOOLS- is the activity of obtaining and comparing physical quantities of real-world objects and events. Established standard objects and events are used as units, and the process of measurement gives a number relating the item under study and the referenced unit of measurement.

CUTTING TOOLS- is any tool that is used to remove material from the workpiece by means of shear deformation. Cutting may be accomplished by single-point or multipoint tools. Single-point tools are used in turning, shaping, plaining and similar operations, and remove material by means of one cutting edge. Milling and drilling tools are often multipoint tools. Grinding tools are also multipoint tools.
BORING TOOLS—boring is the process of enlarging a hole that has already been drilled (or cast), by means of a single-point cutting tool, for example as in boring a cannon barrel. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole.

TESTING TOOLS—used in finding out how well the finished work.

DRIVING TOOLS—driving tools help hand tools and power tools work together, especially important for the variety of drilling tasks that get done in woodworking.
HOLDING TOOLS - Tool for holding firmly any material that has to be cut.
A. Directions: Look at the Table below, from the list the appropriate plumbing materials and tools for each of the following activities.

<table>
<thead>
<tr>
<th>1. Plastic Pipe</th>
<th>11. Pipe Reamer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Elbows</td>
<td>12. Threader</td>
</tr>
<tr>
<td>3. Fittings</td>
<td>13. L – Square</td>
</tr>
<tr>
<td>5. Floor drain</td>
<td>15. Auger Brace and Bits</td>
</tr>
<tr>
<td>7. Couplings</td>
<td>17. Screw driver</td>
</tr>
<tr>
<td>8. Faucet</td>
<td>18. Lavatory</td>
</tr>
</tbody>
</table>

1. Cutting pipes - ______________________________________

2. Measuring the bend angle of pipes - ______________________

3. Threading pipes - ______________________________________

4. Testing the levelness of installed pipes - _________________

5. Connecting two pipes - ________________________________
B. Directions: according to classifications, identify the following plumbing tools.

1.
2.
3.

4.
5.

C. Directions: List down the materials and tools required by the following task. Write your answer on a separate answer sheet.

1. Repair of defective faucet.
2. Replacement of damaged gate valve.
3. Repair of fitting with leakage.
4. Installation of additional faucet.

Refer to the Answer Key. What is your score?
How Do You Apply What You Have Learned?

Show that you learned something by doing this activity

Activity Sheet 1.1

SELECTING MATERIALS AND TOOLS

Directions: Call your teacher and request him to check if you have executed the task based upon his observation.

1. While inside the workplace, your teacher will give you a job order or a particular work to do.

2. Based on the job order, identify all the materials and tools needed.

3. Classify the materials and tools according to their uses.

4. Let the teacher examine the list of the Tools and Materials if they conform to the job requirement.
LEARNING OUTCOME 2
Request appropriate Materials and Tools

PERFORMANCE STANDARDS

- Needed materials and tools are listed as per job requirement.
- Materials and tools are requested according to the list prepared.
- Requests are done as per company’s standard operating procedures (SOP)
- Materials and tools are substituted and provided unavailable without sacrificing cost and quality of work.

What Do You Need To Know?

Read the Information Sheet 2.1 very well then find out how much you can remember and how much you learned by doing the Self-check 2.1.

Information Sheet 2.1

REQUISITION OF MATERIALS AND TOOLS

When making a request of materials and tools, the following forms should be accomplished:
A. Requisition Slip

Name of School:

__

Address:

Plumbing Shop

Requisition Slip

NAME OF PROJECT____________________________________ DATE:

Purpose___ Group:

<table>
<thead>
<tr>
<th>Balance on Hand</th>
<th>Quantity</th>
<th>Materials and Description</th>
<th>Unit Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requested by:

Student’s Name

Foreman

Approved:

Shop Teacher
B. The following are the terminologies found in a requisition form:

1. **Name of Project** indicates the task in which the materials will be used.
 Example: Repair of School Lavatory

2. **Balance On Hand** indicates the quantity and unit of materials still available in the stockroom

3. **Requisition Quantity** and **Unit** is a number and units of materials requested

4. **Unit Price** is the unit of measuring quantity

5. **Material/ Description** write the name of material and description or Specification (e.g. PVC Pipe 12mm X 3m)

6. **Total** is a unit price X Quantity (ex. 3 pc x P30 = P90.00)

7. **Barrower** is a name and signature of the person requesting tools and materials.

8. **Tool Keeper** is the one who is responsible to take care the of the tool room

9. **Job Order** is workings sheet that server as a complete guide of the student to a certain task to be done.

10. **Safety Officer** is the person in-charge to monitor the safety conditioning of the workplace.

11. **Material Officer** is a person responsible in the release and retrieve of excess materials.

12. **Lead man** is a person that leads the group in the specific task.

13. **Foreman** is a person responsible in the overall operation of the worker in the workplace.
Borrower's Slip

Plumbing Shop

Barrower’s Slip

<table>
<thead>
<tr>
<th>Item No.</th>
<th>No. of Pc</th>
<th>Name and Description of Tools</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date:

Approved by:

__________________________________ __
Tool Keeper Borrower

Foreman

Shop Teacher
REQUISITION PROCEDURE

In making a request for materials and tools needed, the following Standard Operating Procedure (SOP) should be followed:

1. List down the materials and tools needed as per job requirement.
2. Check for the availability of the needed materials and tools in the stockroom.
3. Accomplish a requisition form
4. Let the shop teacher check the requisition form.
5. Submit the requisition form to the material officer
6. Unavailable requested materials and tools should be substituted without sacrificing the cost and quality of work
7. The material officer will prepare the requested material for issuance to the student.

How Much Have You Learned?

Self-Check 2.1

I. Directions: Fill in the blanks with appropriate term in filling out a requisition form. Write your answer on a separate answer sheet. Choose from the choices below:

 a. Name of project
 b. Requisition quantity
 c. Balance on hand
 d. Material description
 e. Borrower

1. The specification of materials is requested for______.
2. The task in which the materials and tools will be used is______.
3. The price of the material per piece or per unit is______.
4. The quantity and unit of materials still available in the stockroom is______.
5. Name and signature of the person making the request______.
II. Directions: Arrange the following steps in proper order. Write the letter of the correct sequence on a separate sheet of paper.

a. Check for the availability of materials and tools needed in the stockroom
b. Submit the accomplished requisition form to the supply officer
c. Accomplish a requisition form
d. Prepare a list of the materials and tools needed as per job requirements
e. Select substitute materials and tools if the requested ones are not available
f. Let the shop teacher check the requisition form.
g. List down the materials needed as per job requirement

Proper order in making a request

1. __________________________
2. __________________________
3. __________________________
4. __________________________
5. __________________________
6. __________________________
7. __________________________
LEARNING OUTCOME 3

Receive and inspect materials and tools

PERFORMANCE STANDARDS

- Received and inspected materials and tools as per quantity and specification are based on requisition.
- Tools and materials are checked for damages and manufacturing defects.
- Materials and tools received are handled with appropriate safety devices.
- Materials and tools are set aside to appropriate location nearest to the workplace.

What Do You Already Know?

Pretest LO 3

Let us determine how much you already know about receiving and inspecting materials and tools. Take this test.

Directions: Circle the best answer from the choices given.

1. What is the importance of material management?
 A. It provides the best service to the clientele
 B. It maximizes efficiency
 C. It helps in monitoring and managing inventories
 D. All of the above.

2. What happens when the employees are not informed of the Receiving Procedure?
 A. Productivity and efficiency of the company’s employees are affected.
 B. Wastage of resources is evident.
 C. Misunderstanding among and between employees occurs.
 D. All of the above.

3. Which ensures correctness of deliveries or performance of services?
 A. Requisition procedure
 B. Receiving procedure
 C. Inspection procedure
 D. any of the above
4. Which procedure generally finds out inconsistency in the required specifications of materials, tools, and equipment?
A. Requisition procedure
B. Receiving procedure
C. Inspection procedure
D. Handling procedure

5. Which shows proper carrying and safekeeping of items?
A. Requisition procedure
B. Receiving procedure
C. Inspection procedure
D. Handling procedure

After you have made a request, you are now ready to receive the needed materials and tools. A standard operating procedure (SOP) must be followed. In connection to this, the following are safety measures and proper handling of materials and tools:

1. Check if the materials and tools are complete in terms of quantity or unit.
2. Check if the materials and tools are of correct specifications.
3. See to it that the materials and tools are of good working conditions.
4. Check the tools with accessories. See to it that nothing is missing.
5. Check the materials for damages or defects.
6. If any of the following is found, report/return immediately to the material officer.
 - Incomplete number of materials and tools
 - Materials and tools which are not in accordance with specifications
 - Tools with missing accessories (e.g. faucet without handle or gasket)
 - Materials and tools with damages or defects

7. Get replacements for those returned materials or tools.
8. Sign an issue receipt or borrower’s slip. It signifies that you have received the materials and tools issued in good conditions.
9. Take the issued materials and tools to the workplace.
Material Management

Effective material management is very essential in so many ways for the company or office: First, it provides the best service to the clientele; second, it maximizes efficiency; and, third, it helps in monitoring and managing inventories.

Receiving Procedure

Procedure for receiving requisitions varies in every office or school shop for certain purposes. Offices make it a point that everything is in proper order and perspective to ensure effectiveness and efficiency. However, it is a must that everybody in the company especially the concerned employees are well-acquainted of the process to avoid or at least minimize waste of resources which is very significant to the company’s success.

Below, are samples of Receiving Procedure:
Receiving Guidelines Matrix

Web Version

<table>
<thead>
<tr>
<th>Merchandise</th>
<th>Central Receiving Department / Fiscal Office</th>
<th>Requisitioning Department</th>
<th>Accounts Payable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>The purpose of this matrix is to provide guidance to those personnel involved with receiving or accepting goods and materials on behalf of the Mariveles Community College District. Best business practices support that receiving be completed through a centralized function and location. Such guidance helps ensure that the following “Key Control Objectives” and “Process Attributes” are achieved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Goods are purchased only with proper authorization.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Goods compared to purchase orders or other purchase authorization before acceptance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Unmatched received invoices investigated. Unmatched items identified for return to vendor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Receipts under blanket purchase orders maintained. Quantities exceeding authorized total returned to vendor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Goods received are recorded correctly on account, amount, and period.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Goods counted, inspected, and compared to packing slip before acceptance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Receiving reports issued by receiving inspection department in pre-numbered order.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Receiving documentation, purchase order, and invoice matched before recording liability.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This matrix serves as a guideline on which the order of steps completed may vary depending on college and circumstances.

Goods POs/LPOs - Non-Capital

<table>
<thead>
<tr>
<th>Non-capital and delivered to</th>
<th>Inspection acceptance</th>
<th>Inspection for proper number of packages agrees to delivery document before acceptance</th>
<th>Inspection for obvious damage before acceptance</th>
<th>Agreeing on supporting documentation (packing slip involved) to existing PO/LPO</th>
<th>Receiving merchandise on List in CFS</th>
<th>Deliver merchandise to Requisition Department. Obtain signature from Requisitioning Department or original supporting documentation (packing slip involved) to Delivery Log Sheet.</th>
<th>Make copy of the signed packing slip before sending to Receiving Department.</th>
<th>Finalize action with shipment, forward original to Accounts Payable.</th>
<th>Original packing slip with copy PO/LPO.</th>
<th>Sign original supporting documentation (packing slip involved) to Delivery Log Sheet indicating physical receipt of goods to the department.</th>
<th>Notify vendor and the Central Receiving Department of the appropriate, documented damage.</th>
<th>Reorder merchandise if damaged.</th>
<th>Materials received directly from vendor, it is entered into CFS and evaluated in A/R Department prior to release to Receiving.</th>
<th>Pay vendor after 3-way match of the CLE PO, invoice, and Receiving Records.</th>
</tr>
</thead>
</table>

Fig. 1. Receiving Procedure in Matrix Form
Quality Inspection and Procedure

Delivered or issued items out of requisition should be properly inspected for accuracy in terms of quality, specifications, quantity, and functionality or workability. The act which involves monitoring, observing or testing, usually involving product sampling, to insure compliance with the requirements is known as quality inspection. It includes activities such as collecting data from the item or items to ensure quality and preciseness.

Once quality inspection has been done, the receiver signs a paper or form to attest to the completeness and compliance with the requisition; otherwise, he is obliged
to make a report of his inspection findings to persons or authorities concerned for appropriate action.

Materials Handling

Materials handling operations are carried out in most offices or plants. Each handling task poses unique demands on the worker. However, work places can help workers to perform these tasks safely and easily by implementing and upholding proper policies and procedures. For Industrial plants, regulations under Industrial Establishments (O. Reg. 851/90) made under the Occupational Health and Safety Act should be properly observed.

- Hazards

To assess the hazards of manual material handling operations, consider the load, the task, the environment in which the task is performed, and the operator. When these factors interact with each other, they can create hazards that result in injuries. A load may be hazardous because of:

- Weight
- Size
- shape (making it awkward to handle)
- coupling (type of grip on the load)
- slippery or damaged surfaces
- absent or inappropriate handles, and
- imbalance (i.e., changing centre of gravity)

The task or method of handling may be hazardous when it involves:

- lifting or lowering
 — repetitively
 — quickly
 — for extended periods of time
 — while seated or kneeling
 — immediately after prolonged flexion
 — shortly after a period of rest
- an inability to get close to the load
- moving the load over large distances
- accuracy and precision required because of
 — fragile loads, or
 — specific unloading locations
- materials positioned too low or too high
- hazardous movements or postures (e.g., twisting, extended bending and reaching)
- multiple handling requirements (e.g., lifting, carrying, unloading)

- Control Measures

The best control measure is to eliminate the need for workers to perform manual handling tasks. Since this is not always possible, design manual handling tasks so that they are within the workers’ capabilities. Considerations include the load itself, the design of the workstation and work practices. Providing mechanical handling devices or aids can often eliminate the task itself or ease the demands on the worker.

- Training
Traditional training has focused on proper lifting methods and safe work procedures. More recently, workplaces have introduced fitness and back education approaches. In combination with job and workplace design changes, these approaches are effective in preventing accidents and injuries. On the job demonstrations and practice sessions are the best methods of training. Cover basic manual materials handling procedures, and the proper use of mechanical aids and techniques. Regularly reinforce the proper techniques to ensure their continued use. The objectives of material handling training are to teach the worker:

1. How to identify hazardous loads or handling tasks
2. The proper selection and use of mechanical handling aids
3. Safe postures and manual lifting techniques to minimize strain
4. Safe lifting techniques

How Much Have You Learned?

Self-Check 3.1

Directions: This part checks whether you have learned the required competencies for this particular module. Simply encircle the best answer from the choices given.

1. What is the importance of material management?
 A. It provides the best service to the clientele.
 B. It maximizes efficiency.
 C. It helps in monitoring and managing inventories.
 D. All of the above.

2. What happens when the employees are not informed of the Receiving Procedure?
 A. Productivity and efficiency of the company’s employees are affected.
 B. Wastage of resources is evident.
 C. Misunderstanding among and between employees occurs.
 D. All of the above

3. Which ensures correctness of deliveries or performance of services?
 A. Requisition procedure
 B. Receiving procedure
 C. Inspection procedure
 D. Any of the above

4. Which procedure that generally finds out inconsistency in the required specifications of materials, tools, and equipment?
 A. Requisition procedure
 B. Receiving procedure
 C. Inspection procedure
 D. Handling procedure

5. Which shows proper carrying and safekeeping of items?
 A. Requisition procedure
 B. Receiving Procedure
 C. Inspection procedure
 D. Handling procedure
Directions: Call your teacher and request him to check if you have executed the task based upon his observation.

Show that you learned something by doing this activity

Activity Sheet 3.1

1. Materials are identified and listed based on job requirements.
 DONE NOT DONE UNCERTAIN

2. Quantity and specifications of materials and tools issued are checked.
 DONE NOT DONE UNCERTAIN

3. Materials and tools are checked for damages or defects.
 DONE NOT DONE UNCERTAIN

4. Defective materials and tools are returned and replaced.
 DONE NOT DONE UNCERTAIN

5. Materials and tools are properly issued.
 DONE NOT DONE UNCERTAIN

RECEIVING MATERIALS AND TOOLS

Directions: Using the materials to be used in requesting materials and tools do the following task.

Procedure:
1. Secure a job order from your teacher.
2. Make a list of materials and tools needed based on the job order.
3. Check for the availability of materials and tools in the stockroom.
4. Accomplish and submit a requisition form to the supply officer.
5. Accomplish the barrower slip and submit to the tool keeper.
6. Wait till the supply officer has prepared the needed materials and tools.
7. Receive the materials and tools by following the procedure discussed in Information Sheet #3.1

Refer to the Answer Key. What is your score?
Activity Sheet 3.1

I. Directions: Call your teacher and request him to check if you have executed the task based upon his observation.

_________ 1. Materials and tools are issued only after proper requisition process.

_________ 2. Materials and tools should be checked before receiving.

_________ 3. When the materials or tools are found to be defective, better ignore it.

_________ 4. Sign an issue receipt to indicate that the materials and tools received are of good working conditions.

_________ 5. To be able to work efficiently, the received materials and tools should be stored to a place far from your work area.

II. Directions: Call your teacher and request him to check if you have executed the task based upon his observation.

<table>
<thead>
<tr>
<th></th>
<th>DONE</th>
<th>NOT DONE</th>
<th>UNCERTAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Materials are identified and listed based on job requirements.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Quantity and specifications of materials and tools issued are checked.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Materials and tools are checked for damages or defects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Defective materials and tools are returned and replaced.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Materials and tools are properly issued.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Congratulations! You did a great job! Rest and relax a while then move on to the next lesson. Good luck!

REFERENCES

LO 1
- Barba, Joshua A., Plumbing, ConvergeLink Books Corp., Philippines, 2006
- Better Homes and Gardens Plumbing, Meredith Books Des Moines, Iowa, 2003
- www.wikipedia.com

LO 2
- Fajardo Jr., Max B., Plumbing Design and Estimate, 5138 Trading Philippines, 1975
- www.google.com.ph

LO 3
- www.google.com.ph
- http://www.accountingformanagement.com/controlling_and_costing_materials.htm
LESSON 2

Perform Mensurations and Calculations

LEARNING OUTCOMES:
At the end of this Lesson you are expected to do the following:

LO 1. select measuring instrument; and
LO 2. carry out mensurations and calculations.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>means correctness, exactness, precision.</td>
</tr>
<tr>
<td>Area</td>
<td>is any of space especially of ground or surface that is distinguishable</td>
</tr>
<tr>
<td></td>
<td>from its surrounding in appearance or in certain distinctive features</td>
</tr>
<tr>
<td>Clearance</td>
<td>is the space, allowance or gap between working part of an object.</td>
</tr>
<tr>
<td>English System</td>
<td>is the old way of measurement that replaced the metric system.</td>
</tr>
<tr>
<td>Height</td>
<td>may be used with reference whether high or low by a standard of companion.</td>
</tr>
<tr>
<td>Instrument</td>
<td>is a device that measures or controls something.</td>
</tr>
<tr>
<td>Length</td>
<td>refers to how long an object is</td>
</tr>
<tr>
<td>Measurement</td>
<td>refers to the size, length, quantity or rate of something that has been</td>
</tr>
<tr>
<td></td>
<td>measured.</td>
</tr>
<tr>
<td>Mensurations</td>
<td>the calculation of geometric quantities such as length, area and volume</td>
</tr>
<tr>
<td></td>
<td>from dimensions and angles that are already known.</td>
</tr>
<tr>
<td>Metric System</td>
<td>is the System of measurement which uses 10 as its multiple in all its</td>
</tr>
<tr>
<td></td>
<td>conversion is it in distance, volume, weight etc.</td>
</tr>
<tr>
<td>PPE</td>
<td>is an acronym that stands for Personal Protective Equipment</td>
</tr>
<tr>
<td>Pressure</td>
<td>is the force acting on a surface divided by the area over which it acts.</td>
</tr>
<tr>
<td>Volume</td>
<td>refers to the magnitude size intent, dimension, areas, and bulk, mass</td>
</tr>
<tr>
<td></td>
<td>the total amount of something.</td>
</tr>
<tr>
<td>Weight</td>
<td>refers to the total quality of heaviness and things determined by mass or</td>
</tr>
<tr>
<td></td>
<td>control acts efforts to lift or move them.</td>
</tr>
</tbody>
</table>
LEARNING OUTCOME 1

Select measuring instrument

PERFORMANCE STANDARDS

- Accurate measurements are obtained according to job requirements.
- Identified and converted systems of measurement are according to job requirements.
- Measured work pieces are according to job requirements.

What Do You Already Know?

Pretest LO 1

Let us determine how much you already know about perform estimation. Take this test.

Measuring Instruments in Plumbing

Matching Type: Match the definition in Column A with the term Column B.

<table>
<thead>
<tr>
<th>COLUMN A</th>
<th>COLUMN B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A tool used to measure the outside diameter of a pipe.</td>
<td>a. Outside Caliper</td>
</tr>
<tr>
<td>2. A tool which is made up of steel having divisions in metric system used for layout.</td>
<td>b. L-Square</td>
</tr>
<tr>
<td>3. A measuring tools used to measure the inside diameters or width of pipe and slots.</td>
<td>c. Pull Push Rule</td>
</tr>
<tr>
<td>4. A tool intended to measure the angle, if necessary.</td>
<td>d. Try Square</td>
</tr>
<tr>
<td>5. A tool used to measure the length of a pipe.</td>
<td>e. Inside Caliper</td>
</tr>
</tbody>
</table>
What Do You Need To Know?

Read the Information Sheet 1.1 very well then find out how much you can remember and how much you learned by doing the Self-check 1.1.

Information Sheet 1.1

Measuring Instruments

Measuring Tools

Inside Caliper is used to measure the internal size of an object.

Outside Caliper is used to measure the external size of an object
Steel Square is a tool that carpenters and other tradesman use consisting of a large arm and a smaller arm which meet at an angle 90°. Today the steel square is more commonly referred to as the framing square.

![Steel Square](image)

TRY SQUARE is a wood working or a metal working tool used for marking/measuring a piece of wood. It is primarily used to measure the accuracy of right angle (90° degrees) tried on any surface so as to check its straightness or correspondence to an adjoining surface.

![Try Square](image)

PULL PUSH RULE (Tape Measure) is a flexible tape measure which is available in lengths up to 50 feet. Other tapes that are 12 to 25 feet are usually considered adequate. Most tapes have an automatic power return that is useful but not necessary.

![Pull Push Rule](image)
Proper Handling of Measuring Instruments

How to Handle Measuring Tool

Each measuring tool has its specific way of handling. This must be followed by every student user to maintain its usefulness. Listed below are some of the measuring tools, there are also safety measures to be observed in handling each tool.

Measuring Tools

Inside Caliper is adjusted by rotating the screw to measure holes and diameters. Avoid using tip of the inside caliper to open the cover of any can. Avoid dropping it to maintain its accuracy in taking measurements.

Outside Caliper is a tool used to measure the external size of an object.
Steel Square is a tool that a carpenter and other tradesman use. It consists of a large arm and a smaller arm which meet at an angle of 90°. Today the steel square is more commonly referred to as the framing square.

Hold the tool firmly and cautiously. See to it that it won’t drop. It has a sharp pointed end and dangerous.

TRY SQUARE is a wood working or a metal working tool used for marking/measuring a piece of wood. It is primarily used to measure the accuracy of right angle (90° degrees) tried on any surface so as to check its straightness or correspondence to an adjoining surface.

Hold the try-square properly to maintain its straight edges which are used to get the desired angle. Don’t use it for other purposes. Put it in its proper place.

PULL PUSH RULE (Tape Measure) is a flexible tape measure available in lengths up to 50 feet. Other tapes that are 12 to 25 feet are usually considered adequate. Most tapes have an automatic power return that is useful but not necessary.

Hold the tip of the pull push rule when removing it from its housing. Put it slowly to avoid cut from the steel tape.
Measuring Instruments in Plumbing

I. Matching Type: Match the definition in Column A with the term Column B.

<table>
<thead>
<tr>
<th>COLUMN A</th>
<th>COLUMN B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A tool used to measure the outside diameter of a pipe.</td>
<td>a. Outside Caliper</td>
</tr>
<tr>
<td>2. A tool which is made up of steel having divisions in metric system</td>
<td>b. L-Square</td>
</tr>
<tr>
<td>used for layout.</td>
<td>c. Pull Push Rule</td>
</tr>
<tr>
<td>3. A measuring tools used to measure the inside diameters or width of</td>
<td>d. Try Square</td>
</tr>
<tr>
<td>pipe and slots.</td>
<td>e. Inside Caliper</td>
</tr>
<tr>
<td>4. A tool intended to measure the angle, if necessary.</td>
<td></td>
</tr>
<tr>
<td>5. A tool used to measure the length of a pipe.</td>
<td></td>
</tr>
</tbody>
</table>

After this activity proceed to next page please.

Competent_____ Not Competent_____

II. Directions: On a blank sheet. Write T if the statement is true and F if the statement is false.

A. 1. The steel tape in the housing of pull push rule should be avoided. T
 2. It is safe to bend a try square. T
 3. Any user can keep the tools at any place. F
 4. Holding the outside caliper tightly make difficult adjustments. T
 5. To get the desired data measuring tools should be handled properly. T

B. Essay

Directions: Explain how the following tools are handled properly.
1. Pull push rule
2. Try square
3. Frame square
4. Outside caliper
5. Inside caliper

Refer to the Answer Key. What is your score?

LEARNING OUTCOME 2

Carry out mensurations and calculations

PERFORMANCE STANDARDS

- Object or component to be measured are identified, classified and interpreted according to the appropriate regular geometric shape.
- Measuring tools are selected/identified as per object to be measured or job requirements.
- Correct specifications are obtained from relevant sources.
- Measuring instruments are selected according to job requirements.
- Alternative measuring tools are used without sacrificing cost and quality of work.
- Measurements are obtained according to job requirements.
What Do You Already Know?

Pretest LO 2

Let us determine how much you already know about calculation. Take this test.

Direction: Convert the following measurements as required in the given.

1). 64 cm - ------------------ inches
2). 59 yards - --------------- feet
3). 95.5 dm - --------------- meter
4). 19 inches - --------------- centimetre
5). 47 feet - --------------- inches
6). 4 m - ------------------- cm
7). 9 yards - --------------- feet
8). 5.5 dm - --------------- meter
9). 9 meters - --------------- centimetre
10). 7 feet - --------------- inches
PLUMBING
K to 12 – Technology and Livelihood Education

LINEAR MEASUREMENT (International System)

Metric System Basic Measurement

- **LINEAR MEASURE**
 - 1 Centimeter = 10 Millimeters
 - 1 Decimeter = 10 Centimeters
 - 1 Meter = 10 Decimeters
 - 1 Decameter = 10 Meters
 - 1 Hectometer = 10 Decameters
 - 1 Kilometer = 1000 Meters

- **SQUARE MEASURE (AREA)**
 - 1 Sq. Centimeter = 100 Sq. Millimeters
 - 1 Sq. Meter = 10,000 Sq. Centimeters
 - 1 Acre = 100 Sq. Meters
 - 1 Hectare = 100 Acre
 - 1 Sq. Kilometer = 100 Hectares
 = 1,000,000 Sq. Meters

- **CUBIC MEASURE (VOLUME)**
 - 1 Cubic Centimeter = 1000 Cu. Millimeters
 - 1 Cubic Decimeter = 1000 Cu. Centimeters
 - 1 Cubic Meter = 1000 Cu. Decimeters

- **CAPACITY MEASURE (LIQUID)**
 - 1 Centiliter = 10 Milliliters
 - 1 Deciliter = 10 Centiliters
 - 1 Liter = 10 Deciliters
 - 1 Deciliter = 10 Liters
 - 1 Hectoliter = 10 Deciliters
 - 1 Kiloliter = 10 Hectoliters
 = 100 Liters

- **METRIC CONVERSION**
 - **IN TERMS OF LINEAR**
 - 1 inch = 25.400 millimeters
 - 1 mm = 0.03937 inch
 - **IN TERMS OF AREA**
 - 1 inch = 6.4516 square centimeters
 - 1 cm = 0.01 square meters
 - **IN TERMS OF VOLUME**
 - 1 inch = 16.387 cubic centimeters
 - 1 cm = 0.001 cubic meter
 - **IN TERMS OF WEIGHT**
 - 1 ounce = 28.3495 grams
 - 1 gram = 0.03527 ounces
 - **IN TERMS OF TEMPERATURE**
 - 1 degree Fahrenheit = 5/9 degree Celsius
 - 1 degree Celsius = 9/5 degree Fahrenheit

Information Sheet 2.1

Read the Information Sheet 2.1 very well then find out how much you can remember and how much you learned by doing the Self-check 2.1.
1 inch = 2.54 cm
1 cm = 0.3937 inch
1 foot = 12 inches
1 inch = 0.08333 foot
1 foot = 0.333 yard
1 yard = 3 feet
1 foot = 0.30481 meter
1 meter = 3.2809 feet
1 yard = 36 inches
1 yard = 91.44 centimeters
1 centimeter = 0.9144 meter

<table>
<thead>
<tr>
<th>METRIC CONVERSION</th>
<th>METRIC CONVERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN TERMS OF SQ. MEASURE</td>
<td>IN TERMS OF VOLUME</td>
</tr>
<tr>
<td>1 sq. in. = 6.4516 sq. cm.</td>
<td>1 cu. in = 0.00051787 cu. ft.</td>
</tr>
<tr>
<td>1 sq. cm. = 0.15500 sq. ft.</td>
<td>1 cu. ft. = 1728 cu. inches</td>
</tr>
<tr>
<td>1 sq. ft. = 144 sq. ft.</td>
<td>1 cu. in. = 0.004329 gallons</td>
</tr>
<tr>
<td>1 sq. in. = 0.0094 sq. ft.</td>
<td>1 gallon = 231 cu. inches</td>
</tr>
<tr>
<td>1 sq. ft. = 929.03 sq. cm.</td>
<td>1 cu. in. = 16.93 cu. m.</td>
</tr>
<tr>
<td>1 sq. cm. = 0.00180 sq. ft.</td>
<td>1 cu. in. = 0.06102 cu. in.</td>
</tr>
<tr>
<td>1 sq. ft. = 0.092903 sq. m.</td>
<td>1 cu. in. = 0.00001639 cu. m.</td>
</tr>
<tr>
<td>1 sq. m. = 10.76 sq. ft.</td>
<td>1 cu. ft. = 61023 cu. m.</td>
</tr>
<tr>
<td>1 sq. yd = 9 sq. ft.</td>
<td>1 cu. ft. = 1728 cu. inches</td>
</tr>
<tr>
<td>1 sq. ft. = 0.1111 sq. yd.</td>
<td>1 cu. in. = 0.0005787 cu. ft.</td>
</tr>
<tr>
<td>1 sq. yd = 0.83612 sq. m.</td>
<td>1 cu. ft. = 7481 gallons</td>
</tr>
<tr>
<td>1 sq. m. = 1.196 sq. yd.</td>
<td>1 gallon = 0.1337 cu. ft.</td>
</tr>
<tr>
<td>640 acres = 1 sq. mile</td>
<td>1 cu. ft. = 0.0283 cu. m.</td>
</tr>
<tr>
<td>30-1/4 sq. yd. = 1 sq. pole</td>
<td>1 cu. m. = 35.31 cu. ft.</td>
</tr>
<tr>
<td>40 sq. pole = 1 rod</td>
<td>1 cu. ft. = 28.32 liters</td>
</tr>
<tr>
<td>1 rod = 1 acre</td>
<td>1 liter = 0.03531 cu. ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sq. Inches</th>
<th>Sq. Centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1550</td>
<td>6.4515</td>
</tr>
<tr>
<td>0.3100</td>
<td>12.9030</td>
</tr>
<tr>
<td>0.4650</td>
<td>19.3545</td>
</tr>
<tr>
<td>0.6200</td>
<td>25.8060</td>
</tr>
<tr>
<td>0.7750</td>
<td>32.2575</td>
</tr>
<tr>
<td>0.9300</td>
<td>38.7090</td>
</tr>
<tr>
<td>1.0850</td>
<td>45.1605</td>
</tr>
<tr>
<td>1.2400</td>
<td>51.6120</td>
</tr>
<tr>
<td>1.3950</td>
<td>58.0635</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sq. Feet</th>
<th>Sq. Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7638</td>
<td>0.0930</td>
</tr>
<tr>
<td>21.5276</td>
<td>0.1860</td>
</tr>
<tr>
<td>32.2914</td>
<td>0.2790</td>
</tr>
<tr>
<td>43.0552</td>
<td>0.3720</td>
</tr>
<tr>
<td>53.8190</td>
<td>0.4650</td>
</tr>
<tr>
<td>64.5828</td>
<td>0.5580</td>
</tr>
<tr>
<td>75.3466</td>
<td>0.6510</td>
</tr>
<tr>
<td>86.1104</td>
<td>0.7440</td>
</tr>
<tr>
<td>96.8742</td>
<td>0.8370</td>
</tr>
</tbody>
</table>

640 acres = 1 sq. mile
30-1/4 sq. yd. = 1 sq. pole
40 sq. pole = 1 rod
1 rod = 1 acre

1 cu. yd = 27 cu. ft.
1 cu. ft. = 0.300873 cu. yd
1 pint = 0.4732 liters
1 liter = 2.11327 pints
1 quart = 2 pints
1 pint = 0.50 quarts
1 quart = 0.25 gallons
1 gallon = 4 quarts
1 quart = 57.75 cu. inches
1 cu. in. = 0.17316 quarts
1 quart = 0.03342 cu. ft.
1 cu. ft. = 29.9222 quarts
1 quart = 0.9464 liter
1 liter = 1.057 quarts
1 gallon = 231 cu. inches
1 cu. in. = 0.004329 gallons
1 gallon = 3.78 liters
1 liter = 0.2642 gallon
1 kiloliter = 1,000 liters
1 cu. yd = 1.308 cu. Yards
= 264.18 gallons
1 hectoliter = 100 liters
= 2.838 bushels
= 26.418 gallons

PLUMBING
K to 12 – Technology and Livelihood Education 49
Cubic Inches Cubic Centimeters

<table>
<thead>
<tr>
<th>Cubic Inches</th>
<th>Cubic Centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0610</td>
<td>16.3871</td>
</tr>
<tr>
<td>0.1220</td>
<td>32.7742</td>
</tr>
<tr>
<td>0.1830</td>
<td>49.1613</td>
</tr>
<tr>
<td>0.2440</td>
<td>65.5484</td>
</tr>
<tr>
<td>0.3050</td>
<td>81.9355</td>
</tr>
<tr>
<td>0.3660</td>
<td>98.3226</td>
</tr>
<tr>
<td>0.4270</td>
<td>114.7097</td>
</tr>
<tr>
<td>0.4880</td>
<td>131.0968</td>
</tr>
<tr>
<td>0.5490</td>
<td>147.4839</td>
</tr>
</tbody>
</table>

Cubic Feet Cubic Meters

<table>
<thead>
<tr>
<th>Cubic Feet</th>
<th>Cubic Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.3145</td>
<td>1.000</td>
</tr>
<tr>
<td>70.6289</td>
<td>2.000</td>
</tr>
<tr>
<td>105.9434</td>
<td>3.000</td>
</tr>
<tr>
<td>141.2578</td>
<td>4.000</td>
</tr>
<tr>
<td>176.5723</td>
<td>5.000</td>
</tr>
<tr>
<td>211.8867</td>
<td>6.000</td>
</tr>
<tr>
<td>247.2042</td>
<td>7.000</td>
</tr>
<tr>
<td>282.5156</td>
<td>8.000</td>
</tr>
<tr>
<td>317.8301</td>
<td>9.000</td>
</tr>
</tbody>
</table>

WEIGHT CONVERSION IN METRIC

<table>
<thead>
<tr>
<th>Weight Metric</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Kilogram</td>
<td>100 Grams</td>
</tr>
<tr>
<td>1 Hectogram</td>
<td>10 Grams</td>
</tr>
<tr>
<td>1 Gram</td>
<td>0.035 Ounce</td>
</tr>
<tr>
<td>1 Centigram</td>
<td>0.01 Gram</td>
</tr>
<tr>
<td>1 Milligram</td>
<td>0.001 Gram (gr.)</td>
</tr>
<tr>
<td>1 Ounce</td>
<td>28.35 Grams</td>
</tr>
</tbody>
</table>

LIQUID MEASUREMENT

<table>
<thead>
<tr>
<th>Pint to Liters</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1134 1</td>
</tr>
<tr>
<td>4.2268 2</td>
</tr>
<tr>
<td>6.3402 3</td>
</tr>
</tbody>
</table>

OUNCES TO POUNDS

<table>
<thead>
<tr>
<th>Ounces</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2046</td>
<td>1</td>
</tr>
<tr>
<td>4.4092</td>
<td>2</td>
</tr>
<tr>
<td>6.6139</td>
<td>3</td>
</tr>
<tr>
<td>8.8185</td>
<td>4</td>
</tr>
<tr>
<td>11.0231</td>
<td>5</td>
</tr>
<tr>
<td>13.2277</td>
<td>6</td>
</tr>
<tr>
<td>15.4323</td>
<td>7</td>
</tr>
<tr>
<td>17.6370</td>
<td>8</td>
</tr>
<tr>
<td>19.8416</td>
<td>9</td>
</tr>
</tbody>
</table>

TROY (WEIGHT)

<table>
<thead>
<tr>
<th>Troy Weight</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Grains</td>
<td>1 Penny-Weight</td>
</tr>
<tr>
<td>12 Ounces</td>
<td>1 Ounce Weight</td>
</tr>
<tr>
<td>12 Ounces</td>
<td>1 Pound</td>
</tr>
</tbody>
</table>

AVOIRDUPOIS (WEIGHT)

<table>
<thead>
<tr>
<th>Avoirdupois Weight</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Drams</td>
<td>1 Ounce</td>
</tr>
<tr>
<td>16 Ounces</td>
<td>1 Pound</td>
</tr>
<tr>
<td>100 Pounds</td>
<td>1 Short Hundred Weight</td>
</tr>
<tr>
<td>112 Pounds</td>
<td>1 Long Hundred Weight</td>
</tr>
<tr>
<td>20 Hundred</td>
<td>1 Ton Weight</td>
</tr>
</tbody>
</table>

APOTHECARIES (WEIGHT)

<table>
<thead>
<tr>
<th>Apothecaries Weight</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Grains</td>
<td>1 Scruple</td>
</tr>
<tr>
<td>3 Scruples</td>
<td>1 Dram</td>
</tr>
<tr>
<td>8 Drams</td>
<td>1 Ounce</td>
</tr>
<tr>
<td>12 Ounces</td>
<td>1 Ton Weight</td>
</tr>
</tbody>
</table>

LIQUID MEASUREMENT

<table>
<thead>
<tr>
<th>Pint to Liters</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1134 1</td>
</tr>
<tr>
<td>4.2268 2</td>
</tr>
<tr>
<td>6.3402 3</td>
</tr>
<tr>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Kilogram</td>
</tr>
<tr>
<td>Pound</td>
</tr>
<tr>
<td>Ounce</td>
</tr>
<tr>
<td>Gram</td>
</tr>
<tr>
<td>Gram</td>
</tr>
<tr>
<td>Pound</td>
</tr>
</tbody>
</table>

OUNCES TO POUNDS

<table>
<thead>
<tr>
<th>Ounces</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03573</td>
<td>1</td>
</tr>
<tr>
<td>0.0705</td>
<td>2</td>
</tr>
<tr>
<td>0.1058</td>
<td>3</td>
</tr>
<tr>
<td>0.1429</td>
<td>4</td>
</tr>
<tr>
<td>0.1787</td>
<td>5</td>
</tr>
<tr>
<td>0.2144</td>
<td>6</td>
</tr>
<tr>
<td>0.2501</td>
<td>7</td>
</tr>
<tr>
<td>0.2858</td>
<td>8</td>
</tr>
<tr>
<td>0.3216</td>
<td>9</td>
</tr>
</tbody>
</table>
Graduations on a Rule

INCHES

HALVES

QUARTERS

EIGHTHS

SIXTEENTH
THIRTY- SECONDS

READING FOURTHS ON A RULE

READING FOURTHS ON A RULE
BASIC TYPES OF OBJECTS ON ITS REGULAR GEOMETRIC SHAPE

Types of Geometric Figures

a. Square - Figure having four sides of equal length and four right angles

b. Rectangle - Figure with two parallel ends of equal length, two parallel sides of equal length, and four right angles.

c. Triangle - Figure having three sides and three angles

d. Circle - Flat, round figure formed by one curved line, all points of which are equidistant from center point

e. Rhombus - Figure having no right angles and four sides of equal length

f. Parallelogram - Figure such as a square, rectangle or rhombus with two parallel ends of equal length and two parallel sides of equal length.

g. Trapezoid - Figure with only one pair of parallel opposite sides.
Units of Measure and their Equivalents:

a. Inch (" – Equal to one-twelfth of a foot (1/12) or one thirty-sixth of a yard (1/36 yard)
b. Foot (\(\text{\textquotesingle\textquotesingle}\) – Equal to twelve inches (12") or one-third of a yard (1/3 yard)
c. Yard - Equal to three feet (3") or thirty-six inches (36")
d. Rod - Equal to sixteen and one-half feet (161/2)
e. Mile - Equal to five thousand, two hundred and eighty feet (5280")

Sample of Calculation on Conversion of unit

A. English to Metric System

1. 3 inches - cm

\[
3 \text{ inches} \times \frac{2.54}{1 \text{ inch}} = 7.62 \text{ cm}
\]

2. 10 cm – inch

\[
10 \text{ cm} \times \frac{1 \text{ inch}}{2.54} = 3.94 \text{ inch}
\]

B. Unit in Metric System

1. 79.33 mm x \(\frac{1 \text{ cm}}{10 \text{ mm}}\) x \(\frac{1 \text{ dm}}{10 \text{ cm}}\) = 7.933 dm

C. Unit in English System

1. 13 inch – yard

\[
13 \text{ inch} \times \frac{1 \text{ ft}}{12 \text{ inch}} \times \frac{1 \text{ yard}}{3 \text{ ft}} = 0.393 \text{ yards}
\]
How Much Have You Learned?

Self-Check 2.1

Metric System
10 millimeter – 1 centimeter
10 centimeter – 1 decimeter
10 decimeter – 1 meter

English System
12 inches – 1 foot
3 feet – 1 yard

Metric – English
1 millimeter – 0.03993 inches
1 inch – 2.54 centimeter
1 foot – 0.3048 millimeter
1 yard – 0.9144 millimeter

Using the given conversion table above solve for the desire units

1. 64 cm - ------------- inches
2. 59 yards - -------------- feet
3. 95.5 dm - ------------- meter
4. 19 inches - -------------- centimeter
5. 47 feet - --------------- inches
Congratulations! You did a great job! Rest and relax a while then move on to the next lesson. Good luck!

REFERENCES

LO1
- Better Homes and Gardens Plumbing, Meredith Books Desmoines, Iowa, 2003
- www.google.com.ph

LO 2
- Fajardo Jr., Max B., Plumbing Design and Estimate, 5138 Trading Philippines, 1975
- www.google.com.ph
LESSON 3
Interpret technical drawings and plans

LEARNING OUTCOMES:
At the end of this Lesson you are expected to do the following:

LO 1. Analyze signs, symbols and data
LO 2. Interpret technical drawing
Definition of Terms

Analyze – to examine something in great detail in order to understand it better or discover more about it.

Block Diagram – showing the basic form or lay-out of plumbing diagram in block form labeled.

Blueprint – a photographic print of technical drawing with white lines and blue backgrounds.

Construct – to build or assemble something by putting together separate parts in an ordered way.

Data – factual information obtained from experiments or survey. Basis for making calculation.

Dimension – measurement of one or more direction such as length, width, and height.

Electrical – involving electric cables or circuits powered by electricity.

Interpret – to ascribe particular meaning of significance to something.

Mechanical – a system involving the pipe lines, and mechanical component of or drawing conclusions.

Pictorial Diagram – showing the basic form or lay-out of pictures of actual component.

Plan – method of doing something that is worked out in advance.

Schematic Diagram – showing the basic form or lay-out of plumbing symbols.

Sign – something that indicates the rule to follow.

Symbol – something that represents abstraction with the names of plumbing components.
LEARNING OUTCOME 1

Analyze signs, symbols and data

PERFORMANCE STANDARDS

1. Sign, symbols, and data are identified according to job specifications.
2. Sign, symbols and data are determined according to classification or as appropriate in drawing.

Materials / Resources

- PLAN
- SIGN AND SYMBOLS
- PAPER
- PENCIL
- BALLPEN
- RULER
- TRIANGLE
- ERASER
- CORRECTION LIQUID
- OSLO PAPER
- SHARPENER
- COMPASS
IDENTIFICATION
Direction: Identify the plumbing symbols in each item. Write your answer on the space provided before each number.

1. __

2. __

3. __

4. __

5. __
Directions: Match column A to column B

<table>
<thead>
<tr>
<th>COLUMN A</th>
<th>COLUMN B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Long break line</td>
<td>a. Very light line used to “block in” an object. These lines are made so light that little or no erasing is needed. They serve as base for darkening in the permanent line</td>
</tr>
<tr>
<td>2. Dimension line</td>
<td>b. Heavy, solid line used to frame in the drawing</td>
</tr>
<tr>
<td>3. Centerline</td>
<td>c. A medium line used to show edges and contours visible to the eye.</td>
</tr>
<tr>
<td>4. Invisible line</td>
<td>d. A medium line used to show edges and contours not visible to the eye.</td>
</tr>
<tr>
<td>5. Visible line</td>
<td>e. A light line used as axis of symmetry. Used for center of circle and arcs. Sometimes the symbol is shown</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Borderline</td>
<td>f. Light thin lines used to show the sizes of the object. Extension lights start about 1/16” from visible or object line. The dimension line is broken near the center for the dimension.</td>
</tr>
<tr>
<td>7. Construction line</td>
<td>g. Wavy line draws freehand for the same purpose as long break.</td>
</tr>
</tbody>
</table>
PLUMBING SYMBOLS

OTHER VALVES
- **Valve**
 - Automatic, operated by governor
- **Diaphragm**
- **Pump Governor**
- **Solenoid Control**
- **Thermostatically Controlled**

STRAINERS
- **Type**
 - Box Strainer
 - Duplex Oil Filter
 - Duplex Strainer
 - Strainer
 - Y Strainer

TRAPS
- **Type**
 - Air Eliminator
 - Boiler Return Trap

POWER AND HEATING PLANT EQUIPMENT
- **Symbol**
 - Air Ejector
 - Blower
 - Blower, Soot
 - Boiler, Steam Generator (with Economizer)
 - Engine, Steam
 - Evaporator, Single Effect
 - Pump, Reciprocating
 - Pump, Rotary and Screw
 - Turbine, Steam
 - Gages, Thermometers, and Miscellaneous

VACUUM-PRESSURE
- **Symbol**
 - Vacuum
 - Pressure
 - Liquid Level
 - Air Chamber
 - Vacuum-Pressure
 - Thermometer
 - Thermometer, Distant Reading, Single Socket Type
 - Thermometer, Distant Reading, Separate Socket Type
 - Air Chamber
 - Bulbhead Joint, Expansion
 - Bulbhead Joint, Fixed
 - Meter, Displacement Type (Other than Electrical)
 - Grisipe
 - Sea Chest, Discharge
 - Sea Chest, Suction
 - Refrigeration Equipment
 - Unit
 - Condenser, Evaporative
 - Condenser, Evaporative Condensing Unit, Air Cooled
 - Condenser, Evaporative Condensing Unit, Water Cooled
 - Cooler, Brine
 - Switch, Cut-Out, High Pressure
 - Switch, Cut-Out, Low Pressure
 - Valve, Evaporator Pressure Regulating Small-Action Valve
 - Valve, Expansion, Automatic
 - Valve, Expansion, Manually Operated
 - Valve, Expansion, Thermostatic

What Do You Need To Know?

Read the Information Sheet 1.1 very well then find out how much you can remember and how much you learned by doing the Self-check 3.1. 2.2
In sketching orthographic drawing, certain conventional lines are used for a definite purpose. These lines are commonly called **Alphabet of Lines.**

USES OF ALPHABET OF LINES

<table>
<thead>
<tr>
<th>Construction line</th>
<th>Very light line used to “block in” an object. These lines are made so light that little or no erasing is needed. They serve as base for darkening in the permanent line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borderline</td>
<td>Heavy, solid line used to frame in the drawing</td>
</tr>
<tr>
<td>Visible line</td>
<td>A medium line used to show edges and contours not visible to the eye.</td>
</tr>
<tr>
<td>Invisible line</td>
<td>A medium line used to show edges and contours not visible to the eye.</td>
</tr>
<tr>
<td>Centerline</td>
<td>A light line used as axis of symmetry. Used for center of circle and arcs. Sometimes the symbol is shown</td>
</tr>
<tr>
<td>Dimension line</td>
<td>Light thin lines used to show the sizes of the object. Extension lights start about 1/16” from visible or object line. The dimension line is broken near the center for the dimension.</td>
</tr>
<tr>
<td>Long break line</td>
<td>Wavy line draws freehand for same purpose as long break.</td>
</tr>
</tbody>
</table>
How Much Have You Learned?

Self-Check 3.1

Direction: Enumerate at least 10 plumbing signs and symbols
1. __________________________
2. __________________________
3. __________________________
4. __________________________
5. __________________________
6. __________________________
7. __________________________
8. __________________________
9. __________________________
10. __________________________

Self-Check 3.2

Direction: Enumerate the different kinds of lines.
1. __________________________
2. __________________________
3. __________________________
4. __________________________
5. __________________________
6. __________________________
7. __________________________
8. __________________________
9. __________________________
10. __________________________

Refer to the Answer Key. What is your score?
Congratulations! You did a great job! Rest and relax a while then move on to the next lesson. Good luck!

REFERENCES

LO1
- Better Homes and Gardens Plumbing, Meredith Books Desmoines, Iowa, 2003
- www.google.com.ph

LO 2
- Fajardo Jr., Max B., Plumbing Design and Estimate, 5138 Trading Philippines, 1975
- www.google.com.ph
LEARNING OUTCOME 2

Interpret Technical Drawing

PERFORMANCE STANDARDS

- Necessary tools, materials and equipment are identified according to the plan.
- Components, assemblies or object are recognized as per job requirement.
- Dimensions and specification are identified according to job requirements.
- Freehand sketch is produced in accordance with job requirements.

Materials / Resources

- Plumbing Symbols
- Blueprint
- Plumbing Plan
- Pencil
- Ruler
- Eraser
- Plumbing manuals
B. True or False.
Directions: Write letter T if the statement is true, and letter F, if it’s false.

____________1. Blueprint is a framework gives you a solid foundation to build your project on top of, with an easy-to-use grid, sensible typography, useful plug-in, and even a style sheet for printing.

____________2. Mechanical Plan is a drawing done to scale using specialized instruments showing the actual part of an object.

____________3. Electrical Plan is a drawing done to scale using specialized instruments.

____________4. Sign and Symbol is very much important to plan of the worker.

____________5. Schematic Diagram is the design that follows of the technician when there is a problem encounter.
What Do You Need To Know?

Read the Information Sheet 2.1 very well, then find out how much you can remember and how much you learned by doing the Self-check 2.1.

Information Sheet 2.1

PLUMBING PARTS AND FITTINGS WITH SYMBOLS

<table>
<thead>
<tr>
<th>Illustrated</th>
<th>Symbols (Threaded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° Elbows</td>
<td></td>
</tr>
<tr>
<td>Straight Tee</td>
<td></td>
</tr>
<tr>
<td>Reducing Tee</td>
<td></td>
</tr>
<tr>
<td>Sanitary Tee</td>
<td></td>
</tr>
<tr>
<td>P-Trap</td>
<td></td>
</tr>
<tr>
<td>Gate Valve</td>
<td></td>
</tr>
<tr>
<td>Shower Head</td>
<td></td>
</tr>
<tr>
<td>Lavatory (Sinks)</td>
<td></td>
</tr>
<tr>
<td>Bath Tubs</td>
<td></td>
</tr>
<tr>
<td>Shower Stall</td>
<td></td>
</tr>
</tbody>
</table>

[Diagram of plumbing parts and fittings with symbols]
PROPER INSTALLATION/LAYOUT OF INSULATED VENTILLATION PIPES AND PROPER INSTALLATION/LAY OUT OF LAVATORY, BATH TAB, TOILET BOWL, KITCHEN SINK AND LAUNDRY APPLIANCE
Self-Check 2.1

Draw the following signs, signals, symbols and barricades used in building construction:

1. Under Construction
2. Exit
3. Slippery When Wet
4. Directional signs
5. Danger Keep Out

Refer to the Answer Key. What is your score?
How Do You Extend What You Have Learned?

Show that you learned something by doing this activity

Assignment Sheet 2.1

Draw the plumbing lay out of residential unit with the following:

- Kitchen Sink
- Toilet Bowl
- Bath Tab
- Laundry Appliances

Congratulations! You did a great job! Rest and relax a while then move on to the next lesson. Good luck!

REFERENCES

- German M. Manaois, *Drafting 1 and 2*; Phoenix Publishing: 1983
- Stirling, Norman, *Introduction to Technical Drawing, Metric Edition*
- http://www.images.search.yahoo.com/search/image
-
LESSON 4
Maintain Tools and Equipment

LEARNING OUTCOMES:
At the end of this Lesson you are expected to do the following:

LO 1. Check conditions of tools and equipment
LO 2. Perform basic preventive maintenance
Definition of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condemned</td>
<td>Unfunctional tools or equipment that are to be disposed</td>
</tr>
<tr>
<td>Dull</td>
<td>Unsharpened cutting and tools.</td>
</tr>
<tr>
<td>Equipment</td>
<td>A power tool usually run by motor.</td>
</tr>
<tr>
<td>Grind</td>
<td>to wear down, polish, or sharpen by friction.</td>
</tr>
<tr>
<td>Lubricant</td>
<td>A good solvent cleaner</td>
</tr>
<tr>
<td>Maintenance</td>
<td>The act of keeping tools and equipment in good working condition.</td>
</tr>
<tr>
<td>P.P.E</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>Repair</td>
<td>The process of fixing tool or equipment to make it serviceable again.</td>
</tr>
<tr>
<td>Sharpening</td>
<td>the process of sharpening of tools cutting edge or fine point</td>
</tr>
<tr>
<td>Solvent</td>
<td>A substance, usually a liquid, capable of dissolving another substance</td>
</tr>
</tbody>
</table>
LEARNING OUTCOME 1

Check conditions of tools and equipment

PERFORMANCE STANDARDS

- Tools and equipment are identified according to classification/specification and job requirements.
- Non-functional tools and equipment are segregated and labeled according to classification.
- Safety of tools and equipment are observed in accordance with manufacturer’s instructions.

What Do You Already Know?

Pretest LO 1

Let us determine how much you already know about checking conditions of tools and equipments. Take this test.

Direction: Given the choices below, identify the following tools and equipment used in plumbing.

<table>
<thead>
<tr>
<th>PLUMB BOB OR PLUMMET</th>
<th>PULL PUSH RULE (Tape Measure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRY SQUARE</td>
<td>Steel Square</td>
</tr>
<tr>
<td>Outside Caliper</td>
<td>Inside Caliper</td>
</tr>
<tr>
<td>CLAMP</td>
<td>BENCH VISE</td>
</tr>
<tr>
<td>BASIN WRENCH</td>
<td></td>
</tr>
</tbody>
</table>

1. It is a tool used for testing and surveying to position a point on the ground that is not readily visible.

2. It is a flexible tape measure which is available in lengths up to 50 feet.

3. It is a wood working or a metal working tool used for marking/measuring a piece of wood. It is primarily used to measure the accuracy of right angle (90° degrees) tried on any surface so as to check its straightness or correspondence to an adjoining surface.
4. It is a tool used by carpenters and other tradesman. It consists of a large arm and a smaller arm that meet at an angle of 90°.

5. It is a tool used to measure the external size of an object.

6. It is a tool used to measure the internal size of an object.

7. It is a tool used to grip and hold an object firmly such as wood, paper, plastic, and some metals for a short period time.

8. It is a tool with a mechanical screw apparatus used for holding or clamping a work piece to allow work to be performed on it using anchor.
Read the Information Sheet 1.1 very well then find out how much you can remember and how much you learned by doing the Self-check 1.1.

Information Sheet 1.1

CLASSIFICATION OF TOOLS AND EQUIPMENT

BORING TOOLS

COLD CHISEL is a tool made from hexagon or octagon-shaped steel and is commonly called cold chisel steel. Its convenient size is for handling. One end is shaped for cutting operations.

ELECTRIC DRILL is a power tool that rotates a replaced drill bit to make a hole in wood, plastic or metal. Alternately, a screw driver tip can be installed to turn screw.
HAND DRILL is a tool used with drills or bits found around the tang. The tang is the end of the bit of which is held in the brace.

CUTTING TOOLS

CROSSCUT SAW is a type of cutting tool used to cut the grain of the wood.
HACKSAW is a tool used for cutting metal, plastic or pipe.

PIPE CUTTER is a tool used for cutting pipe and tube.

PIPE REAMER is a tool used for cleaning the inside portion of the pipe and tube to remove the burst and chips.
PIPE THREAD is a tool used for threading the pipe. PIPE THREAD is a tool used for threading the pipe.

DRIVING TOOLS

CLAW HAMMER is a tool used for pulling and driving the nails from some other object. Generally, a hammer is associated with woodworking but is not limited to use for any purpose.
CROW BAR is a tool consisting of a metal bar with a single curved end and flattened points, often with a small fissure on one or both ends for removing nails.

SCREW DRIVER is a tool used to insert and tighten, or to loosen and remove screw. The screw driver comprises a head or tip which engages with a screw, a mechanism to apply torque by rotating the tip, and some way to position and support screw driver.

(Screw drives types: Triple Square, Spanner head, Torque, Tri wing, Robertson, Hex Allen, Torx, Pozidive, Crosshead, Flat)
HOLDING TOOLS

ADJUSTABLE SPANNER/WRENCH, ADJUSTABLE ANGLE HEAD WRENCH is a tool which can be used to loosen and tighten a nut or bolt. It has a “jaw” of adjustable-size, which allows different sizes of nut and bolt.

BASIN WRENCH is a specialized tool which allows one to reach tight spot under sink and basin. The jaw of the basin wrench can not only be adjusted to accommodate nuts of different sizes, but it can also be flipped over the opposite side to keep it turning without removing the wrench.
BENCH VISE is a tool with a mechanical screw apparatus used for holding or clamping a work piece to allow work to be performed on it which uses an anchor. Bench vise or vice has one fixed jaw and another, parallel, jaw which is moved towards or away from the fixed jaw by the screw.

CLAMP is a tool used to grip and hold an object firmly such as wood, paper, plastic and some metals for a short period time.
PIPE WRENCH OR STILLSON WRENCH is an adjustable wrench used for turning soft iron pipes fittings with a rounded surface. The design of the adjustable jaw allows it to rock in the frame such that any forward pressure on the handle tends to pull the jaw tighter together.

Measuring Tools

Inside Caliper is a tool used to measure the internal size of an object.
Outside Caliper is a tool used to measure the external size of an object.

Steel Square is a tool used by carpenters and other tradesman. It consists of a large arm and a smaller arm that meet at an angle of 90˚. Today the steel square is commonly referred to as the framing square.
TRY SQUARE is a woodworking or a metal working tool used for marking/measuring a piece of wood. It is primarily used to measure the accuracy of right angle (90° degrees) tried on any surface so as to check its straightness or correspondence to an adjoining surface.

PULL PUSH RULE (Tape Measure) is a flexible tape measure which is available in lengths up to 50 feet. Other tapes that are 12 to 25 feet are usually considered adequate. Most tapes have an automatic power return that is useful but not necessary.
TESTING TOOLS

PLUMB BOB OR PLUMMET is a tool used for testing and surveying to position a point on the ground that is not readily visible. Plumb bob is a weight with a pointed tip at the bottom that is suspended from a string and used as a vertical reference line.

TESTING TOOLS

CARPENTERS’ SQUARE - a steel square used by carpenters; larger than a try square. Square—a hand tool consisting of two straight arms at right angles.
How Much Have You Learned?

Self-Check 1.1

Directions: Call your teacher and request him to check if you have executed the task. You will be evaluated based upon his observation. You have 40 minutes to complete this exercise.

<table>
<thead>
<tr>
<th>Teacher’s Checklist</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>1. Tools were classified correctly.</td>
<td></td>
</tr>
<tr>
<td>2. Demonstrated correct use of tools.</td>
<td></td>
</tr>
<tr>
<td>3. Applied safety measures in holding tools.</td>
<td></td>
</tr>
<tr>
<td>4. Recorded the damage accurately.</td>
<td></td>
</tr>
<tr>
<td>5. Organized the tools properly.</td>
<td></td>
</tr>
</tbody>
</table>

After this activity, proceed to next page please.

Competent_________ Not Competent_________

Students Name: ____________________________ Date: ____________
Teacher’s Name: __________________________ Date: ____________

Refer to the Answer Key. What is your score?
LO 1. : CHECK OF CONDITION OF TOOLS

TITLE: CHECKING CONDITION OF TOOLS

INTRODUCTION:

Non-functional tools and equipment must be reported and filled up in the report card. The following tools and equipment are used in checking the condition of tools.

Given below is a sample on how to fill up the Record Card.

CLASSIFICATION OF TOOLS AND EQUIPMENT:

- Boring tools
- Cutting Tools
- Holding tools
- Measuring tools
- Testing tools

- Supporting materials:
 - Inventory sheet
 - Report Cards

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
<th>NAME OF TOOLS</th>
<th>CODE</th>
<th>CONDITION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PCS</td>
<td>AUGER BIT #1</td>
<td>PBOR.T 0001- A. BIT</td>
<td>Broken thread</td>
<td>Replaced</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Claw Hammer #2</td>
<td>PDRI.T 0002</td>
<td>Loose Handle</td>
<td>Repair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Claw hammer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>C – Clamp # 4</td>
<td>P Hold.T. 0004</td>
<td>Broken Handle</td>
<td>Repair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CClmp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Inside Caliper # 8</td>
<td>P.Meas.T 0008</td>
<td>Loose Legs</td>
<td>Repair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In.Cal.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Classification of tools

BORING TOOLS

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
<th>NAME OF TOOLS</th>
<th>CODE</th>
<th>CONDITION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DRIVING TOOLS

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
<th>NAME OF TOOLS</th>
<th>CODE</th>
<th>CONDITION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOLDING TOOL

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
<th>NAME OF TOOLS</th>
<th>CODE</th>
<th>CONDITION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEASURING TOOLS

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
<th>NAME OF TOOLS</th>
<th>CODE</th>
<th>CONDITION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEARNING OUTCOME 2

Perform basic preventive maintenance

PERFORMANCE STANDARDS

- Lubricants are identified according to types of equipment.
- Tools and equipment are lubricated according to preventive maintenance schedule or manufacturer’s specifications.
- Tools are cleaned and lubricated according to standard procedures.
- Defective equipment and tools are inspected and replaced according to manufacturer’s specifications.
- Work place is cleaned and kept in safe state in line with OSHC regulations.
- OSHC regulations are followed and apply in the workplace

What Do You Already Know?

Pretest LO 2

Let us determine how much you already know about safely keep / dispose materials and outfit. Take this test.

Directions: Write T if the statement is true and F, if it is false.

1. Safety goggles must be worn anytime the power tools are being used in the work area.
2. Ear protection should be worn when operating tools with high noise level.
3. Loose clothing should be worn around when operating power tools.
4. The pockets of pants are so designed to carry sharp tools thus preventing damage to the cutting edge.
5. The dust collection system is a large vacuum that should only be operated at clean-up time.
6. Certain glues and most finishes are toxic. Prolonged exposure to their fumes should be avoided.
7. Used rags should be placed in the metal container except when in use.
8. Tools should be returned to their storage location after use.
9. When debris accumulates on the floor it should be put into the trash container.
10. Mirror cuts and splinters need not be reported to the teacher.
Before using the tools and equipment in the installation of pipes, you have to know first the types of lubricants to be used. In this manner, you can prevent rusting and malfunctioning of the tools and equipment.

There are four types of lubricants and these are liquid including emulsion and suspension, solid, grease, and paste.

- **Liquid lubricants** – are known as lanolin natural water repellent lanolin which is derived from wool grease and is a safe alternative to the more common petrochemical based lubricants. These lubricants are also preventive agents against inhibitors such as rust, salt and acids.

- **Water** can also be used on its own or as a major component with one of the other base oils.

- **Mineral oil** is used to encompass lubricating base oil derived from crude oil.

- **Vegetable oil** is primarily triglyceride esters derived from plants and animals.

Purpose of Lubricating

Here are the advantages of lubricating the tools and equipment:

- Keeps moving parts apart.
- Reduces friction.
- Transfers heat.
- Carries away contaminant and debris.
- Transmits power.
- Protects against wear.
- Prevents corrosion.
GENERAL SAFETY IN THE WORKING AREA

General Safety Practices

Safety practices are an important component in performing one’s job in order to prevent accidents. In relation to this, safe work habits acquired now will be useful in years to come. The following are reminders that will guide you in practicing safety measures in the working area.

1. Always think “safety first” before performing an operation.
2. Wear safety goggles, or a face shield in the danger zones or in other designed area.
3. Report even the slightest injury; small cuts or other minor injuries may become serious if left unattended. Inform your teacher immediately.
4. Notify your teacher of any unsafe conditions observed. This may include such things as dull tools and frayed electrical cords.
5. Keep the floor clear of scraps of materials.
6. Place clamped stock so it will not fall. Make sure the clamps do not extend into pathways.
7. Place all used rags in a metal fireproof container.
8. Close vise handle so they do not protrude into the aisles.
9. Stay alert! Keep your mind on the operation of the machine all the time. Do not talk to anyone while operating machine.
10. Ask for assistance prior to the cutting long or heavy piece.
11. Wear safe clothing. Make sure you button your shirt, and wear your shoes or sneakers. Do not wear jewelry. If you have long hair tie it back.
12. Respect the right of others and their property.
13. Wear ear protection when operating tools with high noise levels.
14. Be sure everyone is out of danger zone around a machine before beginning an operation.
15. Ask your teacher for permission before using machines.
PREVENTING SLIPS

Slips occur when there is too little friction between your feet and the ground. Common causes of slips are wet surfaces, weather hazards, and loose soil or ground. Slips often happen when you are distracted or in a hurry, but they can be prevented. Here are the following examples of accidents that normally occur if an individual is careless:

On The Job

Constantly wet surfaces
Some jobs have work surfaces that are always wet. You may slip on a wet surface if you turn sharp corners quickly or don’t pay attention to where you’re going. Walking too quickly or taking long steps may cause you to slip. Another common problem is wearing slippery shoes that don’t give you much friction.

Occasional spills
Even a minor coffee or water spill can be dangerous. You could slip if you walk with your hands in your pocket instead of keeping them free for balance. Moreover, slipping often happens if you’re in a hurry.

Weather Hazards
Weather hazards are present in cold countries. You slip if you don’t take extra care when walking outside or if you’re wearing smooth—soled or high-heeled shoes with little friction.
Safety should be the concern of everybody

In relation to this, safe work habits must also be practiced in the shop Room. The illustrations will describe the causes and effects once you are careless inside the working area.
NAILS, TACKS AND SCREWS... HELED IN MOUTH... MAY LEAD TO OPERATING TABLE.

OPERATING GRINDER... WITHOUT EYE PROTECTORS... MAY CAUSE EYE INJURIES.

Never use a hammer that has a loose or split handle.
Never use a hammer that has a loose or split handle.

THROWING TOOLS + TO OTHER PERSONS = MAY CAUSE INJURY.

TOOLS... CARELESSLY CARRIED... = ARE DANGEROUS WEAPONS.
ANTISEPTIC & BANDAGE... + IMMEDIATELY APPLIED TO CUT... = PROVIDES "SAFETY FIRST".
I. **Directions:** Call your teacher and request him to check if you have executed the task. You will be evaluated based upon his observation.

Teacher’s Checklist

<table>
<thead>
<tr>
<th>Acceptability</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The tools are identified correctly according to the job requirement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. The work place is kept safe.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Tools are lubricated correctly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Tools are used and handled properly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. The surrounding is kept clean after doing the standard procedure in applying lubricant.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student’s Signature: _________________________ Date: ____________
Teacher’s Signature: _________________________ Date: ____________

Competent____ Not Competent____
GENERAL SAFETY IN THE WORKING AREA

II. True or False

Directions: Write T if the statement is true and F if it is false.

1. Safety goggles must be worn anytime the power tools are being used in the work area.
2. Ear protection should be worn when operating tools with high noise level.
3. Loose clothing should be worn around when operating power tools.
4. The pockets of pants are designed to carry sharp tools to prevent damage to the cutting edge.
5. The dust collection system is a large vacuum that should only be operated at clean-up time.
6. Certain glues and most finishes are toxic. Prolonged exposure to their fumes should be avoided.
7. Used rags should be placed in the metal container except when in use.
8. Tools should be returned to their storage location after use.
9. When debris accumulates on the floor, it should be put into the trash container.
10. Mirror cuts and splinters need not be reported to the teacher.

Refer to the Answer Key. What is your score?

How Do You Apply What You Have Learned?

Show that you learned something by doing this activity

Activity Sheet 2.1

GENERAL SAFETY IN THE WORKING AREA

Directions: Form groups of three and do the following task.

1. Make a safety poster showing a good workplace.
2. Tour the shop room to determine any potential safety hazards. If you find any hazards, analyze what should be done to correct the situation.
3. Research various types of fire extinguisher A, B, C, and D. Create a chart that lists the types and purpose of each type of extinguisher.
Congratulations! You did a great job!

REFERENCES

- www.google.com.ph
LEARNING OUTCOME 3

Store tools and equipment

PERFORMANCE STANDARDS

- Inventory of tools, instruments, and equipment are conducted and recorded as per company practices.
- Tools and equipment are stored safely in accordance with manufacturer’s specifications or company procedures.

What Do You Already Know?

Let us determine how much you already know about storing tools and equipment. Take this test.

Directions: Choose the letter of the best answer. Write the answer on your answer sheet.

1. Which was created by virtue of Executive Order No. 307, on Nov. 1987?
 A. Department of Labor and Employment
 B. Office of the President
 C. Department of Public Works and Highways
 D. Occupational Safety and Health Center

2. Which is the mandate of this agency?
 A. Protect the Filipino workers against accidents and illnesses.
 B. Let the workers choose their own type of job.
 C. Help the employers gain profits from their business.
 D. Protect the right of the employers.

3. It is a detailed list of all the items in stock.
 A. Delivery Receipt
 B. List of Merchandise
 C. Inventory
 D. Directory

4. Which is true?
 A. Create a sign out sheet for all shop tools.
 B. Conduct an audit for long-term jobs.
 C. Restrict shop tool access to one individual.
D. All of the above.

5. Its advantage is to find out whether tools and equipment are complete, in proper quality, and quantity.
 A. Delivery Receipt
 B. List of Merchandise
 C. Inventory
 D. Directory

What Do You Need To Know?

Read Information Sheet 3.1 very well then find out how much you can remember and how much you learned by doing Self-check 3.1.

Information Sheet 3.1

STORE TOOLS AND EQUIPMENT

A. Tools and Equipment Inventory

Some companies often spend more time in tracking and managing their inventory. Others --- such as manufacturers, producers and construction companies --- may use specific equipment for specific jobs. This creates a difficult situation of attempting to manage inventory at multiple job locations. Business owners and managers typically create systems or processes that employees must follow when using the company's shop tools.

Depending on the type of company, owners or managers may require employees to use own tools for certain jobs. For example, construction companies may require employees to have their own items such as a hammer, painting equipment or welding supplies. This reduces inventory management.

Whatever is the type of company or shop, inventory taking is very important. On this context, inventory is defined as a detailed list of all the items in stock.

Reason for Maintaining Tools and Equipment Inventory

The most important point to consider is to purchase top-grade tools. They must be made of high-quality steel and manufactured for precision. Special consideration is given to balance so that the tool/equipment will be properly maintained and prevent loses. Since the technician must work with his tools daily, regular inventory of tools/equipment is very important.
The initial cost of a minimum number of tools is high but there is accompanying warranty guarantees satisfaction and many years of service. It is better, in the long run, to start with a few carefully selected tools that will take care of your most common needs and then gradually build-up to a complete set. It is sometimes hard to identify and memorize the huge number of tools and equipment in the workshop, maintaining the inventory record is of great value.

Points to Consider

- Create a sign out sheet for all shop tools. Companies can use a sign out sheet where employees must fill up with specific information relating to the inventory item and specific job use. This allows business owners and managers to know where each tool is located at all times.

- Conduct an audit for long-term jobs. Shop tools left at working place for long periods may require a manager to verify that the tool is still on the job site. A manager can visit the site unannounced and review the sign out sheet against all tools on the job.

- Restrict shop tool access to one individual. This allows companies to have one person on each job responsible for checking out, or in, various shop tools. Companies can require this individual to be a manager or foreman.

- Use a barcode system to track inventory. Companies can place barcode labels on each shop tool and require employees to electronically scan each tool when using them at different job sites. This creates an electronic record and can allow real-time reporting of tool use.
Directions: Choose the letter of the best answer. Write the answer on your answer sheet.

1. Which was created by virtue of Executive Order No. 307, on Nov. 1987?
 A. Department of Labor and Employment
 B. Office of the President
 C. Department of Public Works and Highways
 D. Occupational Safety and Health Center

2. Which is the mandate of this agency?
 A. Protect the Filipino workers against accidents and illnesses.
 B. Let the workers choose their own type of job.
 C. Help the employers gain profits from their business.
 D. Protect the right of the employers.

3. It is a detailed list of all the items in stock.
 A. Delivery Receipt
 B. List of Merchandise
 C. Inventory
 D. Directory

4. Which is true?
 A. Create a sign out sheet for all shop tools.
 B. Conduct an audit for long-term jobs.
 C. Restrict shop tool access to one individual.
 D. All of the above.

5. One advantage of this system is to find out whether tools and equipment are complete, in proper quality, and quantity.
 A. A. Delivery Receipt
 B. List of Merchandise
 C. Inventory
 D. Directory

Refer to the Answer Key. What is your score?
I. This is a work group.

1. Conduct a 15-minute buzz session to come up with your own inventory system as if you own a shop.
2. Then, prepare your output on butcher’s papers for presentation to and discussion with the entire class.

Find out by accomplishing the Scoring Rubric honestly and sincerely. Remember it is your learning at stake!

Rubric to be used for assessment

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>PERFORMANCE LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Were the Record Book and the Inventory Form secured from your trainer before starting the performance of task?</td>
<td>YES NO NA</td>
</tr>
<tr>
<td>2. Were all tools of different sizes, conditions and quantities checked and recorded in the inventory form?</td>
<td>YES NO NA</td>
</tr>
<tr>
<td>3. Were all equipment of different ratings/capacities, conditions and quantities checked and recorded in the inventory form?</td>
<td>YES NO NA</td>
</tr>
<tr>
<td>4. Were damaged/lost tools/equipment identified and recorded?</td>
<td>YES NO NA</td>
</tr>
<tr>
<td>5. Were repair recommendations made for the damaged but repairable tools/equipment?</td>
<td>YES NO NA</td>
</tr>
<tr>
<td>6. Were reports on damaged tools/equipment submitted and accurate?</td>
<td>YES Satisfactory</td>
</tr>
</tbody>
</table>

Overall Performance

Student's name: __________________________

Teacher's comment: ___

PLUMBING
K to 12 – Technology and Livelihood Education 106
This is a group work. Prepare for a 10-minute panel discussion on OSHC pertinent regulations for construction workers. (Plumbing Works)

Below is the rubric to be used for the group performance:

Symbols and Meaning:

___√+ Consistently ___√ Usually ___√- Seldom

Knowledge:

___ The group used research to advance arguments and defend positions.
___ Research was effectively applied to arguments.

Understanding:

___ The group demonstrates understanding of the issue.
___ The group presented key points.
___ The group presented original ideas.
___ The group was able to use examples or analogies to defend an argument.
___ The group demonstrated empathy for the cause he or she represented.
___ The group showed respect for others’ opinions.

Communication:

___ The group was logical in presenting arguments.
___ The group was able to communicate effectively and clearly.
___ The group incorporated key terminology/vocabulary.

Participation:

___ The student contributed to the discussion.
___ The student tended to dominate a discussion, thereby hindering others’ participation.

For group evaluation:

___ All students participated in the discussion.
___ Students within the group tended to dominate discussion within the group,
Congratulations! You did a great job! Rest and relax a while then move on to the next lesson. Good luck!

REFERENCES

LO 1
- http://www.masonryforlife.com/HowToBasics.htm
- http://www.masonrymagazine.com/3-08/safety.html
- http://www.businesslink.gov.uk/bdotg/action/detail?itemId=1074426995&r.l1=1073858799&r.l2=1087350927&r.l3=1074425195&r.s=sc&type=RESOURCES
- http://www.isbe.net/career/pdf/IT_C2-1.pdf

LO 2
- www.thefabricator.com/Safety/Safety_Article.cfm?ID=1095

LO 3
- http://www.wisegeek.com/what-is-inventory.htm
- http://topics.wisegeek.com/topics/inventory.html#
- http://www.reliableplant.com/Read/1622/control-power-tools
- http://www.spartans.spa.edu/

hindering other group members’ participation?
LESSON 5
Practice Occupational Health and Safety Procedures

LEARNING OUTCOMES:
At the end of this Lesson, you are expected to do the following:

LO 1. identify hazards and risks;
LO 2. evaluate risks and hazards; and
LO 3. control hazards and risks.
Definition of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident</td>
<td>-is an event occurring unintentionally or by chance.</td>
</tr>
<tr>
<td>Control</td>
<td>-means to direct or determine.</td>
</tr>
<tr>
<td>Hazard</td>
<td>-is a source of danger.</td>
</tr>
<tr>
<td>Occupation</td>
<td>-is an activity in which one is engaged in.</td>
</tr>
<tr>
<td>OHSP</td>
<td>-Occupational Health and Safety Procedures</td>
</tr>
<tr>
<td>PPE</td>
<td>-Personal Protective Equipment</td>
</tr>
<tr>
<td>Safety</td>
<td>-state of being out danger, uninjured, not involving risk</td>
</tr>
<tr>
<td>Threshold</td>
<td>-starting point, bar stone or wood forming bottom of doorway</td>
</tr>
<tr>
<td>Toxic</td>
<td>-deadly, harmful and poisonous</td>
</tr>
</tbody>
</table>
LEARNING OUTCOME 1

Identify hazards and risks

PERFORMANCE STANDARDS

1. Hazards are identified correctly in accordance with OHS procedures.
2. Safety signs and symbols are identified and adhered to in accordance with workplace safety procedures.

What Do You Already Know?

Let us determine how much you already know about identifying hazards and risks. Take this test.

Pretest LO 1

Directions: Write the letter of your choice on your answer sheet.

1. OSH means ____________.
 a) Occupational Service Healthy
 b) Occupational Safe and Healthy
 c) Occupational Safety and Health

2. Who should first know about the accident that happened in your shop?
 a) principal
 b) nurse
 c) teacher
 d) doctor

3. Accidents can be prevented ________________.
 a) through proper care and maintenance of tools and equipment
 b) right attitude toward work
 c) if you have a good knowledge about safety practices.

4. Your employer must conduct a hazard assessment in order to ____________.
 a) avoid accident
 b) promote accident
 c) eliminate workers
5. Identifying hazards makes you___________.
 a) safe from working
 b) comfortable while working
 c) work efficient d) all of the above

Now check your answers using the Answer Key. If you got 90-100% of the items correctly, proceed to the next Learning Outcome. If not, do the next activity/ies again to gain knowledge and skills required for mastery.

What Do You Need To Know?

Read the Information Sheet 1.1 very well then find out how much you can remember and how much you learned by doing Self-check 1.1.

Information Sheet 1.1

Hazards and Risks Identification and Control

- Requirements in Conducting/Identifying Hazards
 - Survey the workplace to identify hazards. This survey must be in writing and must be available to all workers
 - Determine whether any hazard requires Personal Protective Equipment
 - Pay special attention to working conditions or process that can produce hazards.
 - Reassess hazards whenever necessary, especially when new equipment is installed, to avoid accidents.
 Any reassessment must be written and must be available to workers upon request.

HAZARD, RISK AND EXPOSURE IN THE WORKPLACE

Plumbing works covers with a lot of activities to be done in the different workplace. While performing these activities we expose ourselves to a lot of risk. Workplace hazard is a major cause of accident, injury, or harm to a worker who performs such task. These hazards should be the major concern of all who are involved in a certain job or work.

It is important to distinguish hazard, risk and exposure when undertaking risk management.

- **Hazard** is the potential for harm, or adverse effect on an employee’s health. Anything which may cause injury or ill health to anyone at or near a workplace is a hazard.
- **Risk** is the likelihood that a hazard will cause injury or ill health to anyone at or near a workplace. The level of risk increases with the severity of the hazard and the duration and frequency of exposure.
- **Exposure** occurs when a person comes into contact with a hazard.
Types of Hazard

Hazards are classified into five different types. They are:

1. **Physical** - includes floors, stairs, work platforms, steps, ladders, fire, falling objects, slippery surfaces, manual handling (lifting, pushing, pulling), excessively loud and prolonged noise, vibration, heat and cold, radiation, poor lighting, ventilation, air quality
2. **Mechanical and/or electrical** - includes electricity, machinery, equipment, pressure vessels, dangerous goods, fork lifts, cranes, hoists
3. **Chemical** - includes chemical substances such as acids or poisons and those that could lead to fire or explosion, like pesticides, herbicides, cleaning agents, dusts and fumes from various processes such as welding
4. **Biological** - includes bacteria, viruses, mold, mildew, insects, vermin, animals
5. **Psychosocial environment** - includes workplace stressors arising from a variety of sources.

Emergency procedures regarding safety working environment

1. Identify the potential emergencies.
 The emergencies that may occur on plumbing site could include:
 a. Fire
 b. Flood
 c. Typhoon
 d. machinery entrapment
 e. electrical shock
 f. chemical exposure
 g. injuries
 h. illness and
 i. accidents
2. Provide emergency facilities appropriate for the sorts of emergencies that might occur on the farm (e.g. deluge showers, eye washes, firefighting equipment, first aid kits).
3. Make sure that the correct equipment is available to contain and handle any chemical or other dangerous materials spills that might happen.
4. To help minimize the risk of personal injury or property damage in the event of an emergency, people working on and visiting the farm need to know and understand the emergency procedures and their responsibilities.
5. Instruct everyone working on the farm in the emergency response procedures
6. Everyone should know the location of fire alarms, fire extinguishers and first aid kits; how and

WORKING CONDITIONS THAT CAN PRODUCE HAZARDS

1. Falling objects
2. Objects that can puncture skin
3. Objects that could roll over worker’s feet
4. Toxic chemicals
5. Heat
6. Harmful Dust
7. Radiation
Directions: Write the letter of your choice on your answer sheet.

1. Your employer must conduct a hazard assessment in order to _____________.
 a) avoid accident
 b) promote accident
 c) eliminate workers

2. OSH means _________________.
 a) Occupational Service Healthy
 b) Occupational Safe and Healthy
 c) Occupational Safety and Health

3. Identifying hazards makes you___________________.
 a) safe from working
 b) comfortable while working
 c) work efficient
 d) all of the above

4. Who should first know about the accident that happened in your shop?
 a) principal
 b) nurse
 c) teacher
 d) doctor

5. Accidents can be prevented _____________________.
 a) through proper care and maintenance of tools and equipment
 b) right attitude toward work
 c) if you have a good knowledge about safety practices.

Refer to the Answer Key. What is your score?
LEARNING OUTCOME 2
Evaluate hazards and risks

PERFORMANCE STANDARDS

- OHS procedures for controlling hazards and risk are strictly followed.
- Procedures in dealing with workplace accidents, fire and emergencies are followed in accordance with the organization’s OHS policies.
- Personal protective equipment (PPE) is correctly used in accordance with organization’s OHS procedures and practices.
- Procedures in providing appropriate assistance in the event of workplace emergencies are identified in line with the established organizational protocol.

What Do You Already Know?

Let us determine how much you already know about evaluating hazards and risks.
Take this test.

Pretest LO 2

Direction: Identify the following Personal Protective Equipment (PPE)
1.
2.
3.
4.
5.
Read the Information Sheet 2.1 very well then find out how much you can remember and how much you learned by doing Self-check 2.1.

Information Sheet 2.1

Signs and their location:

1. Danger Signs - are used only where immediate hazards exist. They are printed in red as the predominating color.
2. Caution Signs - are used to warn against potential hazards.
3. Exit Signs - are printed in legible red letters for exits.
4. Safety Instructions Signs
5. Accidental Prevention Tags - are used as temporary means of warning to existing hazards, such as deflection, tools and equipment.
6. Barricades - are used for protection of employees

Personal Protective Equipment (PPE)

Here are the types of Personal Protective Equipment (PPE) use for safety purposes:

A. Face protection
 Goggles and face protection must be used when workers are at risk from flying particles, liquid chemicals, acids or caustic liquids and chemical gases. Various goggles for face protection must meet certain design criteria for safety.

B. Foot Protection
 Safety shoes with impact protection are used in work areas where heavy objects or tools could be accidentally dropped on the feet. Safety shoes with puncture protection are required when working around nails, wire tacks, scrap metals and other objects that could pierce the feet.

C. Hand Protection
 Gloves are required to protect the hands of workers from cuts, scrapes, punctures, burns, chemical absorption, and exhaust temperatures. It is crucial that the type of glove being used is the right one for the job.

D. Hearing Protection
Appropriate **ear muffs or ear plugs** must be made available as a last resort if it is not possible to make the workplace less noisy. The requirement is a small part of the occupational noise exposure standard which requires employers to ensure that workers are exposed to less than 90 decibels of noise over an 8 hour period.

E. Respirators

Appropriate **respirators** must be worn as a last resort if it is not possible to ventilate the work area properly.

How Much Have You Learned?

Self-Check 2.1

DIRECTIONS: Define and describe the following:

a. Danger Signs- __

b. Caution Signs- __

c. Exit Signs- __

d. Accidental Prevention Tags- ________________________________

Refer to the Answer Key. What is your score?
LEARNING OUTCOME 3

Control hazards and risks

PERFORMANCE STANDARDS

- OHS procedures for controlling hazards and risk are strictly followed.
- Procedures in dealing with workplace accidents, fire and emergencies are followed in accordance with the organization’s OHS policies.
- Personal protective equipment (PPE) is correctly used in accordance with organization’s OHS procedures and practices.
- Procedures in providing appropriate assistance in the event of workplace emergencies are identified in line with the established organizational protocol.

What Do You Already Know?

Let us determine how much you already know controlling hazards and risks. Take this test.

A. DIRECTION: Write the letter of the correct answer on your Answer Sheet

1. Conducting hazard assessment to a workplace should be done_______.
 a) during working hours
 b) after working hours
 c) before working hours
 d) all of the above

2. Observing good housekeeping _________________.
 a) prevents fire
 b) makes for easy location of tool and materials needed
 c) both a and b
 d) none of the above
3. In dealing with accidents, the first thing to do is to _________________.
 a) stay calm and study the situation
 b) apply first aid
 c) call the attention of your teacher
 d) all of the above

4. Accidents can be prevented _________________.
 a) thru proper cares and maintenance of tools and equipment
 b) right attitude towards works
 c) if you have enough knowledge about safety practices
 d) all of the above

5. When an injury occurs, how soon should it be treated?
 a) After class hours
 b) Immediately
 c) Both a and b
 d) Later

What Do You Need To Know?

Read the Information Sheet 3.1 very well then find out how much you can remember and how much you learned by doing Self-check 3.1.

Information Sheet 3.1

Occupation Health and Safety (OHS) Procedures for controlling hazards and risks.

1. Conduct a hazard assessment like;
 - Survey workplace to identify hazards (put them in writing)
 - Determine whether any hazard required Personal Protective Equipment.
 - Pay attention to working conditions that can produce hazards
 - Reassess hazards whenever necessary, especially when new equipment is installed

2. Select appropriate equipment;
 - Ensure that all Personal Protective Equipment used is the right kind of equipment for the job, and is maintained properly
1. Have knowledge on the following:

- Which PPE is necessary
- How to identify if it fits properly
- How to put on, remove, adjust and wear Personal Protective Equipment (PPE)
- How to dispose of Personal Protective Equipment (PPE)
- The limitation of using Personal Protective Equipment (PPE)

Procedure in dealing with workplace, accidents, fire and Emergencies

PROCEDURES:

A. DEALING WITH ACCIDENTS

1. Keep calm, don’t panic and study the situation.
2. Report immediately to your teacher
3. Apply first aid to the victim while waiting for a nurse or a physician
4. Bring the patient to the nearest clinic or hospital

B. DEALING WITH FIRE

1. Do not panic, stay calm.
2. Call the attention of everybody.
3. Use your firefighting equipment to control extinguish the fire.
4. Call the office or the fire station

C. DEALING WITH EMERGENCIES

1. Stay calm and study the situation.
2. Call the attention of your teacher.

How Much Have You Learned?

Self-Check 3.1

Direction: Write the letter of the correct answer on your Answer Sheet

1. Conducting hazard assessment to a workplace should be done ________.
 a) during working hours
 b) after working hours
 c) before working hours
d) all of the above

2. Observing good housekeeping ________________.
 a) prevents fire
 b) makes for easy location of tool and materials needed
 c) both a and b
 d) none of the above

3. In dealing with accidents, the first thing to do is to ________________.
 a) stay calm and study the situation
 b) apply first aid
 c) call the attention of your teacher
 d) all of the above

4. Accidents can be prevented ________________.
 a) thru proper cares and maintenance of tools and equipment
 b) right attitude towards works
 c) if you have enough knowledge about safety practices
 d) all of the above

5. When an injury occurs, how soon should it be treated?
 a) After class hours
 b) Immediately
 c) Both a and b
 d) Later

Refer to the Answer Key. What is your score?

Congratulations! You did a great job! Rest and relax a while then move on to the next lesson. Good luck!

REFERENCES

- www.google.com
LESSON 1: PREPARE PLUMBING MATERIALS AND TOOLS

What do you already know?
LO.1
1. Steel Square
2. Pipe cutter
3. Pipe threader
4. Pipe reamer
5. Plumb bob
6. Pipe wrench
7. Bench vise
8. Pipe vise
9. Cross cut saw
10. Pull–push rule

LO.2
1. Foreman
2. Leadman
3. Material officer
4. Safety officer
5. Job order
6. Tool keeper
7. Borrower
8. Total
9. Unit price
10. Requisition quality and unit

How much have you learned?
LO.1
A.
1. Pipe cutter
2. L-square
3. Pipe threader
4. Hose level
5. Fittings

B.
1. Clamp
2. Hacksaw
3. Pipe reamer
4. Power hack saw
5. Lavatory

LO.2
I.
1. Material/description
2. Name of project
3. Unit price
4. Balance on hand
5. Requisitioner

II.
1. G
2. A
3. C
4. F
5. B
6. E
LESSON 2: PERFORM MENSURATION AND CALCULATION

What do you already know?

LO.1
1. A
2. B
3. E
4. D
5. C

LO.2
1. \[64 \text{ cm} \times \frac{1 \text{ inch}}{2.54 \text{ cm}} = 25.20 \text{ inch}\]
2. \[59 \text{ yards} \times \frac{3 \text{ ft}}{1 \text{ yard}} = 177 \text{ ft}\]
3. \[95.5 \text{ dm} \times \frac{1 \text{ m}}{10 \text{ dm}} = 9.55 \text{ m}\]
4. \[19 \text{ inches} \times \frac{2.54 \text{ cm}}{1 \text{ inch}} = 48.26 \text{ cm}\]
5. \[47 \text{ feet} \times \frac{12 \text{ inches}}{1 \text{ ft}} = 5.64 \text{ inches}\]
6. \[4 \text{ m} = 400 \text{ cm}\]
7. \[9 \text{ yards} = 27 \text{ feet}\]
8. \[5.5 \text{ dm} = 0.55 \text{ meter}\]
9. \[9 \text{ meters} = 900 \text{ centimetre}\]
10. \[7 \text{ feet} = 84 \text{ inches}\]

How much have you learned?

LO 1
1. Outside caliper
2. L Square
3. Inside caliper
4. Try square

5. Pull Push rule

II.

A.

1. T
2. F
3. F
4. T
5. T

B.

Inside Caliper
Avoid using tip of the inside caliper to open the cover of any can. Avoid dropping it to maintain its accuracy in taking measurements.

Outside Caliper
Don’t hold the outside caliper tightly so that you can adjust it easily. Don’t take the diameter of a revolving type.

Steel Square
Hold the tool firmly and cautiously. See to it that it won’t drop. It has a very pointed end which is very harmful.

TRY SQUARE
Avoid mishandling the try square to maintain their straight edges which are used to get the desired angle. Don’t use it for other purposes. Put it in its proper place.

PULL PUSH RULE (Tape Measure)
Hold the tip of the pull push rule when removing it from its housing. Put it slowly to avoid cut from the steel tape.

LO 2

1. 64 cm x 1 inch = 25.20inch
 \[\frac{2.54\text{cm}}{} \]

2. 59 yards x 3 ft = 177ft
 \[\frac{1\text{ yard}}{} \]

3. 95.5 dm x 1m = 9.55m
 \[\frac{10\text{dm}}{} \]

4. 19 inches x \(\frac{2.54\text{ cm}}{1\text{ inch}} \) = 48.26cm

5. 47 feet x \(\frac{12\text{ inches}}{1\text{ ft}} \) = 5.64 inches
 \[\frac{1\text{ft}}{} \]
LESSON 3: INTERPRET TECHNICAL DRAWINGS AND PLAN

What do you already know?

Pre Test LO1. A.

1. Floor Drain
2. Shower Head
3. Shower Head Gang
4. Clean Out
5. Hot water tank

Pre Test B

1. G
2. F
3. E
4. D
5. C
6. B
7. A

Self Check 3.1
<table>
<thead>
<tr>
<th>Lines</th>
<th>Width and Character of Lines</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible line</td>
<td>THICK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width: 0.75 - 0.95 mm (0.030 - 0.037")</td>
<td></td>
</tr>
<tr>
<td>Hidden line</td>
<td>THIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width: 0.38 - 0.55 mm (0.015 - 0.022")</td>
<td></td>
</tr>
<tr>
<td>Section line</td>
<td>THICK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width: 0.38 - 0.55 mm (0.015 - 0.022")</td>
<td></td>
</tr>
<tr>
<td>Center line</td>
<td>THIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width: 0.38 - 0.55 mm (0.015 - 0.022")</td>
<td></td>
</tr>
<tr>
<td>Dimension line,</td>
<td>THIN</td>
<td></td>
</tr>
<tr>
<td>Extension line,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutting-plane or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viewing-plane lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-break line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THICK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width: 0.75 - 0.95 mm (0.030 - 0.037")</td>
<td></td>
</tr>
<tr>
<td>Long-break line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width: 0.38 - 0.55 mm (0.015 - 0.022")</td>
<td></td>
</tr>
<tr>
<td>Phantom line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width: 0.38 - 0.55 mm (0.015 - 0.022")</td>
<td></td>
</tr>
</tbody>
</table>
LESSON 4: MAINTAIN TOOLS AND EQUIPMENT

What do you already know?

LO.1
1. Plumb bob
2. Pull push rule
3. Try square
4. Steel square
5. Outside caliper
6. Inside caliper
7. Clamp
8. Bench vise

LO.2
1. True
2. True
3. False
4. False
5. False
6. True
7. True
8. True
9. True
10. False

How much have you learned?

LO 2
1. True
2. True
3. False
4. False
5. False
6. True
7. True
8. True
9. True
10. False
LESSON 5: PRACTICE OCCUPATIONAL HEALTH AND SAFETY PROCEDURES

<table>
<thead>
<tr>
<th>What do you already know?</th>
<th>How much have you learned?</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO.1</td>
<td>LO.1</td>
</tr>
<tr>
<td>1. C</td>
<td>1. A</td>
</tr>
<tr>
<td>2. C</td>
<td>2. C</td>
</tr>
<tr>
<td>3. A</td>
<td>3. D</td>
</tr>
<tr>
<td>4. A</td>
<td>4. C</td>
</tr>
<tr>
<td>5. D</td>
<td>5. D</td>
</tr>
</tbody>
</table>

LO.2

1. Hand Protection
2. Goggles
3. Respirators
4. Hearing Protection
5. Safety Shoes

LO.3

1. C
2. C
3. A
4. D
5. B

LO.2

a. Danger Signs- are used only where immediate hazards exist. They are printed in red as the predominating color.

b. Caution Signs- are used to warn against potential hazards.

c. Exit Signs- are printed in legible red letters for exits.

d. Accidental Prevention Tags- are used as temporary means of warning existing hazards, such as defection, tools and equipment.

LO.3

1. C
2. C
3. A
4. D
5. B
Acknowledgement

This Learning Module was developed for the Exploratory Courses in Technology and Livelihood Education, Grades 7 and 8 of the K to 12 Curriculum with the assistance of the following persons:

This Learning Module on Plumbing NC I was developed by the following personnel:

MODULE WRITERS

RONALDO V. RAMILO
Division ICT Coordinator
Tanauan City Division
Tanauan City - Region IV-A Calabarzon

DEOVER M. PASCO
ICT Coordinator
Tagum National Trade School
Tagum, Davao del Norte - Region XI

REVIEWERS

GIL P. CASUGA
Chief TESD Specialist

REYNALDO S. DANTES
Senior TESD Specialist

MARIA A. ROQUE
Senior TESD Specialist

BERNADETTE S. AUDIJJE
Senior TESD Specialist

VICTORIO N. MEDRANO
Principal IV, SPRCNHS

PARALUMAN R. GIRON, Ed.D.
Chair, Sub-TWG on K to 10

BRENDA B. CORPUZ, Ph.D.
TA for K to 12 Curriculum

OFELIA O. FLOJO
Retired Assistant Chief, EED, Region IV-A

BEATRIZ A. ADRIANO
Principal IV, ERVHS

AIDA T. GALURA
VSA II, ACNTS

DOMINGA CAROLINA F. CHAVEZ
Principal II, MBHS

DOCUMENTORS /SECRETARIAT

PRISCILLA E. ONG
K to 12 Secretariat

FREDERICK G. DEL ROSARIO
Head Teacher III, BNAHS

EMMANUEL V. DIONISIO
Head Teacher III, AFGBMTS

LYMWEL P. LOPEZ
Teacher I, AFGBMTS

DANTE D. VERMON JR.
Teacher I, AFGBMTS

CHERLYN F. DE LUNA
Teacher I, AFGBMTS

Dir. IMELDA B. TAGANAS
Executive Director, Qualifications Standards Office
K to 12 Learning Area Team Convenor, TLE/TVE